电子科技 ›› 2024, Vol. 37 ›› Issue (2): 46-54.doi: 10.16180/j.cnki.issn1007-7820.2024.02.007
王迪,冯松,陈梦林,刘勇,胡祥建,冯露露
收稿日期:
2022-08-27
出版日期:
2024-02-15
发布日期:
2024-01-18
作者简介:
王迪(1996-),男,硕士研究生。研究方向:锗硅异质PN结电光调制结构。|冯松(1982-),男,博士,教授。研究方向:硅基光子器件及集成。|陈梦林(1999-),男,硕士研究生。研究方向:硅基波导分束器。
基金资助:
WANG Di,FENG Song,CHEN Menglin,LIU Yong,HU Xiangjian,FENG Lulu
Received:
2022-08-27
Online:
2024-02-15
Published:
2024-01-18
Supported by:
摘要:
光子调制器是光纤通信系统中的核心器件,主要对光信号进行调制,实现信号从电域到光域的转换。随着硅基半导体工艺的发展,硅基光子调制器逐渐成为了主流硅光子器件,基于硅工艺技术的GHz带宽调制器的实现也为硅光子学的发展奠定了基础。作为一种用于短距离光互连的高性能光调制器,SiGe光吸收调制器受到了较多关注。文中讨论了高性能SiGe电光调制器的发展现状,对国内外硅基光子调制器的研究进展进行分析,讨论了PIN、PN结等电学调制结构,为研发高速率、低损耗的光子调制器提供了思路。
中图分类号:
王迪,冯松,陈梦林,刘勇,胡祥建,冯露露. SiGe电光调制器研究进展[J]. 电子科技, 2024, 37(2): 46-54.
WANG Di,FENG Song,CHEN Menglin,LIU Yong,HU Xiangjian,FENG Lulu. Research Progress of SiGe Electro-Optical Modulator[J]. Electronic Science and Technology, 2024, 37(2): 46-54.
表1
工作在通信波长下锗硅PIN电光调制器"
参考 | 类型 | 波长 /nm | 偏置电 压/V | 电流 /nA | 截止频率 /GHz | 传输光功 率/Gbit·s-1 |
---|---|---|---|---|---|---|
文献[19] | V-PIN | 1 550 | 1.0 | 1.6 | 40 | - |
文献[20] | V-PIN | 1 530 | 1.0 | 3.0 | 45 | - |
文献[21] | L-PIN | 1 550 | 1.0 | 4.0 | 120 | 40@0 V |
文献[22] | L-PIN | 1 550 | 0.5 | 500.0 | 14~19 | - |
文献[23] | L-PIN | 1 550 | 1.0 | 160.0 | 17@4 V | - |
文献[24] | L-PIN | 1 550 | 1.0 | 32.0 | 45~90 | 25/40 |
文献[25] | V-PIN | 1 550 | 4.0 | 120.0 | 20 | 10 |
文献[26] | V-PIN | 1 550 | 1.0 | 11.0 | 50 | 28 |
表2
工作在通信波长下锗硅PN电光调制器"
参考 | 类型 | 调制效率 /V·cm | 调制波长 /nm | 最大调制 速率/Gbit·s-1 | 3 dB带宽 /GHz | 能耗 /fJ·bit-1 | 尺寸 /μm2 | 消光比 /dB | 插入损耗 /dB | 能耗 /fJ·bit-1 |
---|---|---|---|---|---|---|---|---|---|---|
文献[38] | MZ | 2.80 | 1 550 | 50 | - | - | - | 3.1 | 3.70 | - |
文献[39] | MZ | 2.00 | 1 550 | 60 | 28 | - | - | 3.6 | 1.20 | - |
文献[40] | 微环 | - | 1 550 | 41 | 21 | 1.03 | 10×10 | 6.4 | 1.20 | 1.03 |
文献[41] | MZ | 2.43 | 1 310 | 50 | 30 | 450 | 3 000×5 000 | 3.4 | 3.34 | 450.00 |
文献[42] | 微环 | 2.50 | 1 550 | 10 | - | 287 | - | 4.0 | - | 287.0 |
文献[43] | 微环 | - | 1 566 | 56 | 40 | 45 | 5×5 | 4.5 | 2.40 | 45.00 |
文献[44] | MZ | - | 2 000 | 40 | - | - | - | 10.4 | 12.50 | - |
表3
工作在通信波长下基于量子阱的电光调制器"
参考 | 类型 | 能耗 /fJ·bit-1 | 尺寸 /μm2 | 摆动电压 /V | 3 dB带 宽/GHz | 消光比 /dB | 插入损 耗/dB |
---|---|---|---|---|---|---|---|
文献[48] | GeSi QCSE | - | π × 302 | 1.5 | 35 | 2.5 | >4.5 |
文献[49] | GeSi QCSE | 16 | 3.0× 90 | 1.0 | 23 | 9.0 | 15.0 |
文献[12] | GeSi QCSE | - | 0.6 × 40 | 0.0~2.0 | - | 4.6 | - |
文献[8] | GeSi QCSE | - | 1.0× 50 | 0.0~2.8 | - | 6.0 | - |
文献[50] | GeSi QCSE | - | 1.4 × 70 | 0.0~4.0 | - | 3.7 | 5.0 |
[1] | 胡祥建, 冯松, 冯露露, 等. 硅基光子调制器研究进展[J]. 集成技术, 2022, 11(2):89-106. |
Hu Xiangjian, Feng Song, Feng Lulu, et al. Research pro-gress of silicon-based photonic modulator[J]. Journal of Integration Technology, 2022, 11(2):89-106. | |
[2] | Li W, Li M, Zhang H, et al. 50 Gbit/s silicon modulato roperated at 1 950 nm[C]. San Diego: Optical Fiber Communications Conference and Exhibition, 2020:99-107. |
[3] | Chaisakul P, Marris M D, Rouifed M S, et al. Recentprogress in GeSi electro-absorption modulators[J]. National Institute for Materials Science, 2014, 15(1):1-9. |
[4] | Dobbelaere P D, Abdalla S, Gloeckner S, et al. Si photo-nics based high-speed optical transceivers[C]. Amsterda-m: The Thirty-eighth European Conference and Exhibi-tion on Optical Communications, 2012:192-199. |
[5] | Han C H, Jin M, Tao Y S, et al. Recent progress in silicon-based slow-light electro-optic modulators[J]. Microm-achines, 2021, 3(13):1-25. |
[6] | 冯松, 高勇. 微纳米PIN电光调制器的优化[J]. 光电子·激光, 2014, 5(25):870-875. |
Feng Song, Gao Yong. Optimization of the micro-nano PIN electro-optic modulator[J]. Journal of Optoelectronics·Laser, 2014, 5(25):870-875. | |
[7] | 李亚明, 李晶. 新型紧凑硅基电光调制器研究[J]. 无线电通信技术, 2016, 42(4):53-56. |
Li Yaming, Li Jing. Study of a novel silicon-based electro-optical modulator[J]. Radio Communication Technology, 2016, 42(4):53-56. | |
[8] | Feng D Z, Liao S R, Liang H, et al. High speed Gi electro-absorption modulator at 1 550 nm wavelength on SOI waveguide[J]. Optics Express, 2012, 20(20):22224-22232. |
[9] | Feng D Z, Wei Q, Hong L, et al. High-speed GeSi elect-roabsorption modulator on the SOI waveguide platform[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6):64-73. |
[10] | KimY, Han J, Takenaka M, et al. Low temperature surface passivation for carrier injection type SiGe optical modulator[C]. Seoul: The Tenth International Confer ence on Group IV Photonics, 2013:158-166. |
[11] | Streshinsky M, Ding R, Liu Y, et al. Low power 50 Gbit/s silicon traveling wave Mach-Zehnder modulatornear 1 300 nm[J]. Optical Society of America, 2013, 21(25):30350-30357. |
[12] | Srinivasan S A, Pantouvaki M, Gupta S, et al. 56 Gbit/s germanium waveguide electro-absorption modulator[J]. Journal of Lightwave Technology, 2015, 34(2):419-424. |
[13] | Srinivasan S A, Verheyen P, Loo R, et al. 50Gbit/s C-b and SiGe waveguide electro-absorption modulator[C]. Anaheim: Optical Fiber Communications Conference and Exhibition, 2016:355-359. |
[14] | 冯松, 薛斌, 李连碧, 等. 一种新型Si/SiGe/Si双异质结PIN电学调制结构的异质结能带分析[J]. 物理学报, 2016, 65(5):90-97. |
Feng Song, Xue Bin, Li Lianbi, et al. Analysis of Si/SiGe/Si double heterojunction band of a novelstructure of PIN electrical modulation[J]. Acta Physics Sinica, 2016, 65(5):90-97. | |
[15] | Mastronardi L, Banakar M, Khokhar A Z, et al. High-sp-eed Si/SiGe hetero-structure electro absorption modulator[J]. Optics Express, 2017, 26(6):6663-6673. |
[16] | Sobu Y, Simoyama T, Tanaka S T Y, et al. 70Gbaud operation of all-silicon Mach-Zehnder modulator based on forward-biased PIN diodes and passive equalizer[C]. Fukuoka: The Twenty-fourth Opto Electronics and Communications Conference and International Conference on Photonics in Switching and Computing, 2019:1178-1189. |
[17] | Liu Z, Li X, Niu C, et al. 56 Gbps high-speed Ge elect-ro-absorption modulator[J]. Photonics Research, 2020, 8(10):1648-1652. |
[18] | Benedikovic D, Virot L, Aubin G, et al. Silicon-germanium receivers for short-wave infrared optoelectronics and communications[J]. Nanophotonics, 2021, 10(3):1059-1079. |
[19] | Byrd M J, Timurdogan E, Zhan S, et al. Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors[J]. Optics Letters, 2017, 42(4):851-854. |
[20] | DeRose C T, Trotter D C, Zortman W A, et al. Ultra compact 45 GHz CMOS compatible germanium waveguide photodiode with low dark current[J]. Optics Express, 2011, 19(25):24897-24904. |
[21] | Vivien L, Polzer A, Marris M D, et al, Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon[J]. Optics Express, 2012, 20(2):1096-1101. |
[22] | Li G, Luo Y, Zheng X, et al. Improving CMOS-compatible germanium photodetectors[J]. Optics Express, 2012, 20(24):26345-26350. |
[23] | Zhou H F, Sun Y L. Size reduction of Ge-on-Si photodetectors via a photonic bandgap[J]. Applied Optics, 2018, 57(12):2962-2978. |
[24] | Fedeli J M, Virot L, Vivien L, et al, High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications[C]. Singapore: IEEE the Seventh International Silicon-Germanium Technology and Device Meeting, 2014:301-316. |
[25] | Zhang Y, Yang S, Yang Y, et al. A high-responsivity ph-otodetector absent metal-germanium direct contact[J]. Optics Express, 2014, 22(9):11367-11375. |
[26] | Hong T C, Verheyen P, Heyn P D, et al. High-responsivi-ty low-voltage 28 Gbit/s Ge PIN photodetector with silicon contacts[J]. Journal of Lightwave Technology, 2015, 33(4):820-824. |
[27] | Li G L, Zheng X Z, Yao J, et al. 25 Gbit/s 1V-driving C-MOS ring modulator with integrated thermal tuning[J]. Optics Express, 2011, 19(21):20435-20443. |
[28] | Xu Q F, David F, Raymond G B. Silicon microring resonators with 1.5 microm radius[J]. Optics Express, 2008, 16(6):4309-4315. |
[29] | Xiao X, Xu H, Li X Y, et al. 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions[J]. Optics Express, 2012, 20(3):2507-2515. |
[30] | Xiao X, Li X Y, Xu H, et al. 44 Gbit/s silicon microring modulators based on zigzag PN junctions[J]. Photonics Technology Letters, 2012, 24(19):1712-1714. |
[31] | Tu X G, Liow T Y, Feng J S, et al. 50-Gbit/s silicon optical modulator with traveling-wave electrodes[J]. Optics Express, 2013, 21(10):12776-12782. |
[32] | Streshinsky M, Ding R, Novack A, et al.50 Gbit/s silicon traveling wave Mach-Zehnder modulator near 1 300nm[J]. Optics Express, 2013, 21(25):30350-30357. |
[33] | Cao W, Thomson D J, Nedeljkovic M, et al. 20 Gbit/s sili-con optical modulators for the 2 μm wavelength band[C]. Cancun: IEEE Fifteenth International Conferenceon Group IV Photonics, 2018:509-518. |
[34] | Lu G W, Zhang H B, Shinada S, et al. Power-efficient O-band 40 Gbit/s PAM4 transmitter based on dual-drive cascaded carrier-depletion and carrier-injection silicon Mach-Zehnder modulator with binary driving electronics at CMOS voltages[J]. Journal of Selected Topics in Quantum Electronics, 2021, 27(3):1-8. |
[35] | Rui L, David P, Eslam E F, et al. Silicon photonic dual-drive MIM based 56 Gbit/s DAC-less and DSP-free PAM-4 transmission[J]. Optics Express, 2018, 26(5):5395-5407. |
[36] | Chaisakul P, Vakarin V, Frigerio J, et al. Recent progresson Ge/SiGe quantum well optical modulators,detectors and emitters for optical interconnects[J]. Photonics, 2019, 6(1):24-41. |
[37] | Porret C, Srinivasan S A, Balakrishnan S, et al. O-band SiGe quantum-confined stark effect electro-absorptionmodulator integrated in a 220 nm silicon photonics platform[C]. Honolulu: IEEE Symposium on VLSI Technology, 2020:159-166. |
[38] | Thomson D J, Gardes F Y, Fedeli J M, et al. 50 Gbit/s si-licon optical modulator[J]. IEEE Photonics Technology Letters, 2012, 24(4):234-236. |
[39] | Xiao X, Xu H, Li X Y, et al. High-speed low-loss silico-n Mach-Zehnder modulators with doping optimization[J]. Optics Express, 2013, 21(4):4116-4125. |
[40] | Timurdogan E, Sorace A C M, Sun J, et al. An ul-tralow power athermal silicon modulator[J]. Nature Communications, 2014, 5(1):1-11. |
[41] | Streshinsky M, Ding R, Liu Y, et al. Low power 50 Gbit/s silicon traveling wave Mach-Zehnder modulatornear 1 300 nm[J]. Optics Express, 2013, 21(25):30350-30537. |
[42] | Ziebell M, Marris M D, Rasigade G, et al. 10 Gbit/s ring resonator silicon modulator based on interdigitated PN junctions[J]. Optics Express, 2011, 19(15):14690-14695. |
[43] | Pantouvaki M, Verheyen P, De Coster J, et al. 56 Gbit/s ring modulator on a 300mm silicon photonics platform[C]. Valencia: European Conference on Optical Communication, 2015:483-492. |
[44] | Hu H M, Wang S X, Liu Y F, et al. Design of a high extinction ratio silicon optical modulator at 2 μm using the cascaded compensation method[J]. OSA Continuum, 2021, 4(7):1933-1944. |
[45] | Vakarin J, Chaisakul V, Ballabio P, et al. Electro-refraction in standard and symmetrically coupled Ge/SiGe quantum wells[J]. Nanoscience and Nanotechnology Letters, 2017, 9(7):1123-1127. |
[46] | Chaisakul P, Koompa N, Limsuwan P. Theoretical invest-igation of a low-voltage Ge/SiGe multiple quantum wells optical modulator operating at 1 310 nm integrated with Si3N4 waveguides[J]. Advances in Low Dimensional and 2D Materials, 2018, 8(11):115318-115325. |
[47] | Zhang Y, Gao J, Qin S, et al. Asymmetric Ge/SiGe coupled quantum well modulators[J]. Nanophotonics, 2021, 10(6):1765-1773. |
[48] | Edwards E H, Audet R M, Fei E T, et al. Ge/SiGe asy-mmetric Fabry-Perot quantum well electro absorption modulators[J]. Optics Express, 2012, 20(28):29164-29173. |
[49] | Chaisakul P, Marris M D, Rouifed M S, et al. 23 GHz Ge/SiGe multiple quantum well electro absorption modulator[J]. Optics Express, 2012, 20(3):3219-3224. |
[50] | Traiwattanapong W, Chaisakul P, Frigerio J, et al. Design and simulation of waveguide-integrated Ge/SiGe quantum-confined stark effect optical modulator based on adiabatic coupling with SiGe waveguide[J]. AIP Advances, 2021, 11(3):5117-5126. |
[1] | 冯露露,冯松,胡祥建,陈梦林,刘勇,王迪. 中红外硅基光波导的发展现状[J]. 电子科技, 2024, 37(2): 36-45. |
[2] | 潘昊,刘翔,赵静文,张星. 一种面向密集场景的轻量化人群检测网络[J]. 电子科技, 2023, 36(8): 35-42. |
[3] | 张乔木,钟倩文,孙明,罗文成,柴晓冬. 复杂环境下弓网接触位置动态监测方法研究[J]. 电子科技, 2022, 35(8): 66-72. |
[4] | 黄静,谢宣. 基于改进的SSD监理目标检测研究[J]. 电子科技, 2022, 35(5): 7-13. |
[5] | 薛焕杰,陈晓俐,官伯然. 基于OPNET的高频通信协议仿真与分析[J]. 电子科技, 2020, 33(12): 7-11. |
[6] | 袁小平,王岗,王晔枫,汪喆远,孙辉. 基于改进卷积神经网络的交通标志识别方法[J]. 电子科技, 2019, 32(11): 28-32. |
[7] | 刘靖, 赵逢禹. 高维数据降维技术及研究进展[J]. , 2018, 31(3): 36-. |
[8] | 孔梦华,卜 刚,吴振淇. 低功耗SigmaDelta调制器的建模与设计[J]. , 2016, 29(9): 136-. |
[9] | 廖珊. 基于VPN的机房网络架构及安全体系设计[J]. , 2016, 29(4): 187-. |
[10] | 张传林,孙垂强. 基于PN码的多通道幅相测量设备设计及实现[J]. , 2016, 29(3): 157-. |
[11] | 李坤. 基于动态反馈机制的服务器负载均衡算法研究[J]. , 2015, 28(9): 45-. |
[12] | 魏榕山,陈林城. 高精度低功耗Sigma-Delta调制器的设计[J]. , 2015, 28(10): 126-. |
[13] | 黄永,李培咸,白俊春,王晓波. 多量子势垒电子阻挡层对UV LED 性能的影响[J]. , 2014, 27(6): 184-. |
[14] | 卢小娜,李嘉颖,陈志宏. 一种新颖的实现大小功率切换的技术[J]. , 2014, 27(4): 95-. |
[15] | 苏雪娟,黄玥,孙宇. MPLS VPN技术在电力企业广域网中的应用[J]. , 2013, 26(3): 137-. |
|