[1] |
Viola P, Jones M J. Rapid object detection using a boosted cascade of simple features[C]. Kauai: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001:377-390.
|
[2] |
Dollár P, Tu Z, Perona P, et al. Integral channel features[C]. London: British Machine Vision Conference, 2009:7-10.
|
[3] |
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. San Diego: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2005:886-893.
|
[4] |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2017, 39(6):1137-1149.
|
[5] |
He K, Gkioxari G, Dollar P, et al. Mask R-CNN[J]. Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(2):386-397.
|
[6] |
Chu X, Zheng A, Zhang X, et al. Detection in crowded scenes: One proposal, multiple predictions[C]. Virtual: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:12214-12223.
|
[7] |
Zhang S, Wen L, Bian X, et al. Occlusion-aware R-CNN: detecting pedestrians in a crowd[C]. Munich: Proceedings of the Fifteenth European Conference on Computer Vision. Cham: Springer, 2018:657-674.
|
[8] |
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]. Amsterdam: Proceedings of the IEEE European Conference on Computer Vision, 2016:21-37.
|
[9] |
Redmon J, Farhadi A. Yolov3: An incremental improvement[EB/OL]. (2018-04-08) [2021-9-15] https://arxiv.org/pdf/1804.02767.pdf
|
[10] |
Bochkovskiy A, Wang C, Liao H. Yolov4: Optimal speed and accuracy of object detection[EB/OL]. (2004-10-34) [2021-10-21] https://arxiv.org/pdf/2004.10934.pdf
|
[11] |
Ultralytics. YOLOv5[EB/OL]. (2020-06-09) [2021-9-31] https://github.com/ultralytics/yolov5.
|
[12] |
刘竣文, 张永军, 李智, 等. 基于RDM-YOLOv3的头部检测[J]. 激光与光电子学进展, 2022, 59(8):1-15.
|
|
Liu Junwen, Zhang Yongjun, Li Zhi, et al. Head detection based on RDM-YOLOv3[J]. Laser & Optoelectronics Progress, 2022, 59(8):1-15.
|
[13] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
|
[14] |
Huang G, Liu Z, Van D M L, et al. Densely connected convolutional networks[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:4700-4708.
|
[15] |
蔡逢煌, 张岳鑫, 黄捷. 基于YOLOV3与注意力机制的桥梁表面裂痕检测算法[J]. 模式识别与人工智能, 2020, 33(10):926-933.
doi: 10.16451/j.cnki.issn1003-6059.202010007
|
|
Cai Fenghuang, Zhang Yuexin, Huang Jie. Bridge surface crack detection algorithm based on YOLOv3 and attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10):926-933.
doi: 10.16451/j.cnki.issn1003-6059.202010007
|
[16] |
叶飞, 刘子龙. 基于改进YOLOv3算法的行人检测研究[J]. 电子科技, 2021, 34(1):5-9.
|
|
Ye Fei, Liu Zilong. Research on pedestrian detection based on improved YOLOv3 algorithm[J]. Electronic Science and Technology, 2021, 34(1):5-9.
|
[17] |
Law H, Deng J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3):642-656.
doi: 10.1007/s11263-019-01204-1
|
[18] |
Zhou X, Wang D, Krähenbühl P. Objects as points[C]. Long Beach: IEEE Conference on Computer Vision and Pattern Recognition, 2019:35-43.
|
[19] |
Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:116-131.
|
[20] |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017:2980-2988.
|
[21] |
Ge Z, Liu S, Wang F, et al. Yolox: Exceeding yolo series in 2021[EB/OL]. (2021-08-06) [2021-10-30] https://arxiv.org/pdf/2107.08430.pdf.
|