[1] |
黄承斌, 王忆, 彭渤. 大功率LED COB封装关键技术的研究与分析[J]. 中国照明电器, 2014, 5(1):1-5.
|
|
Huang Chengbin, Wang Yi, Peng Bo. Research and analysis of high-power LED COB package technology[J]. China Light & Lighting, 2014, 5(1):1-5.
|
[2] |
Kim T Y, Kim D K, Kim S J. Scroll heat sink:A novel heat sink with the moving fins inserted between the cooling fins[J]. International Journal of Heat and Mass Transfer, 2008, 51(13-14):3267-3274.
doi: 10.1016/j.ijheatmasstransfer.2008.03.014
|
[3] |
李海波. 大功率LED灯具的散热结构设计与仿真研究[D]. 哈尔滨: 哈尔滨理工大学, 2012:29-60.
|
|
Li Haibo. Thermal structure design and simulation of the high Power LED lighting[D]. Harbin: Harbin University of Science and Technology, 2012:29-60.
|
[4] |
郑代顺, 钱可元, 罗毅. 大功率发光二极管的寿命试验及其失效分析[J]. 半导体光电, 2005, 2(1):87-91,127.
|
|
Zheng Daishun, Qian Keyuan, Luo Yi. Life test and failure mechanism analyses for high-power LED[J]. Semiconductor Optoelectronics, 2005, 2(1):87-91,127.
|
[5] |
Mueller-Mach R, Mueller G O, Krames M R, et al. High-power phosphor-converted light-emitting diodes based on III-Nitrides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2):339-345.
doi: 10.1109/2944.999189
|
[6] |
Barton D L, Osinski M, Perlin P, et al. Single-quantum well InGaN green light emitting diode degradation under high electrical stress[J]. Microelectronics Reliability, 1999, 39(8):1219-1227.
doi: 10.1016/S0026-2714(99)00010-4
|
[7] |
Sufian S F, Abdullah M Z. Heat transfer enhancement of LEDs with a combination of piezoelectric fans and a heat sink[J]. Microelectronics and Reliability, 2017, 68(2):39-50.
doi: 10.1016/j.microrel.2016.11.011
|
[8] |
肖原彬, 杨平. 对大功率LED车灯芯片结温部分关键影响因素的研究[J]. 电子科技, 2019, 32(3):72-76.
|
|
Xiao Yuanbin, Yang Ping. Research on the partial key factors affecting the junction temperature of high power LED lamp chip[J]. Electronic Science and Technology, 2019, 32(3):72-76.
|
[9] |
刘红, 朋亚, 杨梦, 等. LED散热器热分析建模方法[J]. 半导体光电, 2016, 37(4):515-517.
|
|
Liu Hong, Peng Ya, Yang Meng, et al. Modeling methods of LED radiator thermal analysis[J]. Semiconductor Optoelectronics, 2016, 37(4):515-517.
|
[10] |
Sarowar M T. Numerical analysis of a liquid metal cooled mini channel heat sink with five different ceramic substrates[J]. Ceramics International, 2021, 47(8):214-225.
doi: 10.1016/j.ceramint.2020.08.124
|
[11] |
Jeong M W, Jeon S W, Kim Y. Optimal thermal design of a horizontal fin heat sink with a modified-opening model mounted on an LED module[J]. Applied Thermal Engineering, 2015, 91(8):105-115.
doi: 10.1016/j.applthermaleng.2015.08.001
|
[12] |
Christensen A, Grahma S. Thermal effects in packaging high power light emitting diode arrays[J]. Applied Thermal Engineering, 2009, 29(2-3):364-371.
doi: 10.1016/j.applthermaleng.2008.03.019
|
[13] |
Jang D, Yu S H, Lee K S. Multidisciplinary optimizationof a pinfin radial heat sink for LED lighting applications[J]. International Journal of Heat & Mass Transfer, 2012, 55(4):515-521.
|
[14] |
Zhao X J, Cai Y X. Thermal model design and analysis of the high-power LED automotive headlight cooling device[J]. Applied Thermal Engineering, 2015, 75(10):248-258.
doi: 10.1016/j.applthermaleng.2014.09.066
|
[15] |
Min W J, Jeon S W, Sang H L, et al. Effective heat dissipation and geometric optimization in an LED module with aluminum nitride insulation plate[J]. Applied Thermal Engineering, 2015, 76(2):212-219.
doi: 10.1016/j.applthermaleng.2014.11.027
|
[16] |
Jang D, Yook S J, Lee K S. Optimum design of a radia lheat sink with a finheight profile for high-power LED lighting applications[J]. Applied Energy, 2014, 116(3):260-268.
doi: 10.1016/j.apenergy.2013.11.063
|
[17] |
谷超豪, 李大潜, 陈恕行, 等. 数学物理方程[M]. 3版. 北京: 高等教育出版社, 2012:77-105.
|
|
Gu Chaohao, Li Daqian, Chen Shuxing, et al. Mathematical physics equations[M]. Third Edition. Beijing: Higher Education Press, 2012:77-105.
|
[18] |
孙历霞. LED散热器热分布的数学建模与数值模拟[D]. 杭州: 浙江大学, 2016:26-49.
|
|
Sun Lixia. Mathematical model and numerical simulations of the heat distribution for LED heat sink[D]. Hangzhou: Zhejiang University, 2016:26-49.
|
[19] |
朱丽艳, 邓又军, 段超华, 等. 热/声耦合方程的解耦分析和数值求解[J]. 数学理论与应用, 2022, 42(1):51-64.
|
|
Zhu Liyan, Deng Youjun, Duan Chaohua, et al. Decoupling analysis and numerical solution of thermal/acoustic coupling equations[J] Mathematical Theory and Applications, 2022, 42(1):51-64.
|
[20] |
张继红, 栾舒含, 梁波. 具非线性对流项热传导方程的有限差分法[J]. 大连交通大学学报, 2022, 43(5):115-117.
|
|
Zhang Jihong, Luan Shuhan, Liang Bo. Study on finite difference method of heat conduction equation with nonlinear convection term[J]. Journal of Dalian Jiaotong University, 2022, 43(5):115-117.
|
[21] |
华冬英, 李祥贵. 微分方程的数值解法与程序实现[M]. 北京: 电子工业出版社, 2016:63-108.
|
|
Hua Dongying, Li Xianggui. Numerical solution and program realization of differential equations[M]. Beijing: Publishing House of Electronics Industry, 2016:63-108.
|
[22] |
余德浩, 汤华中. 微分方程数值解法[M]. 北京: 科学出版社, 2003:97-122.
|
|
Yu Dehao, Tang Huazhong. Numerical solution of differential equations[M]. Beijing: Science Press, 2003:97-122.
|
[23] |
Parry J, Bornoff R, Blackmore B. Move your thermal strategy for air-cooled electronics up in the design flow[J]. Electronic Design, 2009, 57(14):39-42.
|