电子科技 ›› 2024, Vol. 37 ›› Issue (3): 75-83.doi: 10.16180/j.cnki.issn1007-7820.2024.03.010

• • 上一篇    下一篇

基于深度学习的盲道和盲道障碍物识别算法

马文杰, 张轩雄   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2022-11-02 出版日期:2024-03-15 发布日期:2024-03-11
  • 作者简介:马文杰(1996-),男,硕士研究生。研究方向:机器视觉。
    张轩雄(1963-),男,博士,教授。研究方向:微电子机械系统。
  • 基金资助:
    国家自然科学基金(62276167)

Research on Blind Roads and Obstacle Recognition Algorithm Based on Deep Learning

MA Wenjie, ZHANG Xuanxiong   

  1. School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology, Shanghai 200093,China
  • Received:2022-11-02 Online:2024-03-15 Published:2024-03-11
  • Supported by:
    National Natural Science Foundation of China(62276167)

摘要:

盲道和盲道障碍物是影响盲人出行安全的重要因素,现有算法只对盲道分割和盲道障碍物检测单独处理,效率低且计算量大。针对上述问题,文中提出了一种基于深度学习的多任务识别算法。该算法通过骨干网络提取公共特征,将提取的特征经过SPP(Spatial Pyramid Pooling)和FPN(Feature Pyramid Networks)网络融合特征后,分别传入分割网络和检测网络完成盲道分割和盲道障碍物检测的任务。为了让盲道分割更平整,引入修正损失函数。为了提高障碍物检测召回率,将检测网络的NMS(Non Maximum Suppression)替换为Soft-NMS。实验结果表明,该算法分割部分MIoU(Mean Intersection over Union)、MPA(Mean Pixel Accuracy)分别达到了93.52%、95.29%,检测部分mAP(mean Average Precision)、mAP@0.5以及mAP@0.75分别达到了75.58%、91.58%和74.82%。相较于使用SegFormer网络进行盲道分割和RetinaNet网络进行盲道障碍物检测,该算法在精度提升的同时速度也提升73.72%,FPS(Frames Per Secon)达到了18.52。相比于其他对比算法,该算法在速度和精度上也有一定的提升。

关键词: 盲道分割, 盲道障碍物检测, 目标检测, 图像分割, 特征融合, Transformer, 多任务学习, 深度学习

Abstract:

Blind roads and blind road obstacles are important factors that affect the travel safety of blind people. Existing algorithms only deal with blind road segmentation and blind road obstacle detection separately, with low efficiency and high computational complexity. To solve the above problems, this study proposes a multi-task recognition algorithm based on deep learning. The algorithm extracts public features through the backbone network, after the extracted features are fused through the SPP(Spatial Pyramid Pooling)and FPN(Feature Pyramid Networks)networks, they are respectively passed into the segmentation network and the detection network to complete the tasks of blind road segmentation and blind road obstacle detection. In order to make the blind road segmentation smoother, a correction loss function is introduced. In order to improve the recall rate of obstacle detection, the NMS(Non Maximum Suppression) of the detection network is replaced by Soft-NMS. The experimental results show that the algorithm segmentation part MIoU, MPA reach 93.52%, 95.29%, respectively, and the detection part mAP(mean Average Precision)、mAP@0.5 and mAP@0.75 respectively reach 75.58%、91.58%and 74.82%. Compared with using the SegFormer network for blind road segmentation and the RetinaNet network for blind road obstacle detection, this algorithm not only improves the accuracy, but also improves the speed by 73.72%, and the FPS(Frames Per Secon) reaches 18.52. Compared with other comparative algorithms, this algorithm also has a certain improvement in speed and accuracy.

Key words: blind roads segmentation, blind roads obstacle detection, object detection, image segmentation, feature fusion, Transformer, multi-task learning, deep learning

中图分类号: 

  • TP391