[1] |
Strebjiwsjum H S, Canoll III J T. A finite element model of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1985, 107(2):349-354.
doi: 10.1115/1.3186008
|
[2] |
Komvopoulos K, Erpenbeck S A. Finite element modeling of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1991, 113(1):253-267.
doi: 10.1115/1.2899695
|
[3] |
Wiesner C. Residual stresses after orthogonal machining of AlSl 304:Numerical calculation of the thermal component and comparison with experimental results[J]. Metallurgical Transactions A, 1992, 23(3):989-996.
doi: 10.1007/BF02675573
|
[4] |
Shih A J. Finite element simulation of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1995, 117(1):84-93.
doi: 10.1115/1.2803283
|
[5] |
Wern H. Finite-element solutions for mechanical drilling methods:A new integral formalism[J]. Journal of Computational and Applied Mathematics, 1995, 63(1-3):365-372.
doi: 10.1016/0377-0427(95)00089-5
|
[6] |
Yang G, Tite C, Smith G T, et al. Determination of residual stresses induced by hardened steel turning using finite element methods[C]. Boston: Design Engineering Technical Conferences collocated with the ASME, 1995:356-363.
|
[7] |
Lin Z, Lee L. An investigation of the residual stress of a machined workpiece considering tool flank wear[J]. Journal of Materials Processing Technology, 1995, 51(1-4):1-24.
doi: 10.1016/0924-0136(94)01322-R
|
[8] |
Chou I A, Chan H M, Harmer M P. Machining-induced surface residual stress behavior in Al2O3-SiC nanocomposites[J]. Journal of the American Ceramic Society, 1996, 79(9):2403-2409.
doi: 10.1111/jace.1996.79.issue-9
|
[9] |
Lin Z C, Lai W L, Lin H Y, et al. Residual stresses with different tool flank wear lengths in the ultra-precision machining of Ni P alloys[J]. Journal of Materials Processing Technology, 1997, 65(1-3):116-126.
doi: 10.1016/0924-0136(95)02251-1
|
[10] |
Abdel-Rahman N, Sivakumaran K S. Material properties models for analysis of cold-formed steel members[J]. Journal of Structural Engineering, 1997, 123(9):1135-1143.
doi: 10.1061/(ASCE)0733-9445(1997)123:9(1135)
|
[11] |
Lee D, Kim J K. Measurement of residual stresses in encapsulant of a PQFP[C]. Chicago: Proceedings of the Second Electronics Packaging Technology Conference,IEEE, 1998:236-240.
|
[12] |
Fraser S, Attia M H, Osman M. Modelling,identification and control of thermal deformation of machine tool structures,part 1:Concept of generalized modelling[J]. Journal of Manufacturing Science and Engineering, 1998, 120(3):623-631.
doi: 10.1115/1.2830167
|
[13] |
Jacobus J K, Devor R E, Kapoor S G. Part warpage model based on machining-induced residual stress[J]. Technical Paper Society of Manufacturing Engineers, 1999, 39(8):1-6.
|
[14] |
Perl M. The change in overstrain level resulting from machining of an autofrettaged thick-walled cylinder[C]. Dallas: ASME Pressure Vessels and Piping Conference, 1999:621-628.
|
[15] |
El-Wardany T I, Kishawy H A, Elbestawi M A. Surface integrity of die material in high speed hard machining,part 2:Microhardness variations and residual stresses[J]. Journal of Manufacturing Science & Engineering, 2000, 122(4):620-631.
|
[16] |
Tanner D A, Robinson J S, Cudd R L. Cold compression residual stress reduction in aluminium alloy 7010[J]. IEEE Transactions on Machinal Technology Review, 2000(7):235-240.
|
[17] |
Yang X, Liu C R. A new stress based model of friction behaviour in machining and its significant impact on residual stresses[J]. International Journal of Mechanical Sciences, 2002, 44(4):703-723.
doi: 10.1016/S0020-7403(02)00008-5
|
[18] |
Dattoma V. On the evolution of welding residual stress after milling and cutting machining[J]. Computers & Structures, 2006, 84(29-30):1965-1976.
doi: 10.1016/j.compstruc.2006.08.008
|
[19] |
Shih A J, Yang H. Experimental and finite element predictions of residual stresses due to orthogonal metal cutting[J]. International Journal for Numerical Methods in Engineering, 2010, 36(9):1487-1507.
doi: 10.1002/nme.v36:9
|
[20] |
Arrazola P J, Kortabarria A, Madariaga A, et al. On the machining induced residual stresses in IN718 nickel-based alloy:Experiments and predictions with finite element simulation[J]. Simulation Modelling Practice & Theory, 2014, 41(1):87-103.
|
[21] |
Huang X, Jie S, Li J. Effect of initial residual stress and machining-induced residual stress on the deformation of aluminium alloy plate[J]. Strojniski Vestnik Journal of Mechanical Engineering, 2015, 61(2):131-139.
|
[22] |
Pan Z, Liang S Y, Garmestani H. Finite element simulation of residual stress in machining of Ti6Al4V with a microstructural consideration:[J]. Journal of Engineering Manufacture, 2019, 233(4):1103-1111.
doi: 10.1177/0954405418769927
|
[23] |
Wang B, Yan C, Li J, et al. Residual stress and deformation analysis in machining split straight bevel gears[J]. Journal of Mechanical Engineering, 2021, 67(3):1-9.
|
[24] |
Zhuang K, Zhou S, Zou L, et al. Numerical investigation of sequential cuts residual stress considering tool edge radius in machining of AISI 304 stainless steel[J]. International Journal of the Federation of European Simulation Societies, 2022, 118(1):1-15.
|
[25] |
Obikawa T, Usui E. Computational machining of titanium alloy-finite element modeling and a few results[J]. Journal of Manufacturing Science & Engineering, 1996, 118(2):208-215.
|
[26] |
Cao Y Q. Failure analysis of exit edges in ceramic machining using finite element analysis[J]. Engineering Failure Analysis, 2001, 8(4):325-338.
doi: 10.1016/S1350-6307(00)00024-8
|
[27] |
Dirikolu M H, Childs T, Maekawa K. Finite element simulation of chip flow in metal machining[J]. International Journal of Mechanical Sciences, 2001, 43(11):2699-2713.
doi: 10.1016/S0020-7403(01)00047-9
|
[28] |
Das S, Klotz M, Klocke F. EDM simulation:Finite element-based calculation of deformation, microstructure and residual stresses[J]. Journal of Materials Processing Technology, 2003, 142(2):434-451.
doi: 10.1016/S0924-0136(03)00624-1
|
[29] |
Ning H, Wang Z, Jiang C, et al. Finite element method analysis and control stratagem for machining deformation of thin-walled components[J]. Journal of Materials Processing Technology, 2003, 139(1-3):332-336.
doi: 10.1016/S0924-0136(03)00550-8
|
[30] |
Zel T. The influence of friction models on finite element simulations of machining[J]. International Journal of Machine Tools & Manufacture, 2006, 46(5):518-530.
doi: 10.1016/j.ijmachtools.2005.07.001
|
[31] |
Bi Y B, Ke Y L, Cheng Q L, et al. Key technologies of physics-based milling process simulation[J]. Journal of Zhejiang University(Engineering Science), 2007, 41(4): 541-546.
|
[32] |
Shetty R, Pai R, Rao S S. Finite element modeling of stress distribution in the cutting path in machining of discontinuously reinforced aluminium composites[J]. Journal of Engineering & Applied Sciences, 2008(6):6-18.
|
[33] |
Pedro J Aa, Tugrul Z B. Investigations on the effects of friction modeling in finite element simulation of machining[J]. International Journal of Mechanical Sciences, 2010, 52(1):31-42.
doi: 10.1016/j.ijmecsci.2009.10.001
|
[34] |
Ozel T, Llanos I, Soriano J, et al. 3D finite element modelling of chip formation process for machining inconel 718:Comparison of fe software predictions[J]. Machining Science and Technology, 2011, 15(1):21-46.
doi: 10.1080/10910344.2011.557950
|
[35] |
Banerjee N, Sharma A. Development of a friction model and its application in finite element analysis of minimum quantity lubrication machining of Ti6Al4V[J]. Journal of Materials Processing Technology, 2016, 23(12):181-194.
|
[36] |
Pashaki P V, Pouya M, Maleki V A. High-speed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation[J]. Journal of Mechanical Engineering Science, 2018, 232(11):1927-1936.
|
[37] |
Yang L. Design and analysis of machining quality control system based on finite element technology[C]. Chongqing: IEEE International Conference on Power,Intelligent Computing and Systems,IEEE, 2020:809-816.
|
[38] |
Dodla S, Idnani K, Katyal A. Finite element machining simulations of aerospace materials[J]. Materials Today:Proceedings, 2021, 46(9):991-998.
doi: 10.1016/j.matpr.2021.01.136
|
[39] |
Ranjan P, Hiremath S S. Finite element simulation and experimental validation of machining martensitic stainless steel using multi-layered coated carbide tools for industry-relevant outcomes[J]. Simulation Modelling Practice and Theory, 2022, 114(1):1-13.
|
[40] |
Zhang Z, Feng S, Ding Y, et al. Thermal error modeling of spindle and dynamic machining accuracy reliability analysis of CNC machine tools based on IA and LHSMC[J]. Maintenance and Reliability, 2022, 24(1):100-113.
doi: 10.17531/ein.2022.1.12
|