电子科技 ›› 2024, Vol. 37 ›› Issue (6): 36-43.doi: 10.16180/j.cnki.issn1007-7820.2024.06.005

• 研究论文 • 上一篇    下一篇

基于改进生成对抗网络的图像风格迁移算法

王圣雄, 刘瑞安, 燕达   

  1. 天津师范大学 电子与通信工程学院,天津 300387
  • 收稿日期:2022-04-06 出版日期:2024-06-15 发布日期:2024-06-20
  • 作者简介:王圣雄(1997 -),男,硕士研究生。研究方向:目标检测及图像处理。
    刘瑞安(1966-),男,博士,教授。研究方向:人脸检测与识别。
    燕达(1997-),男,硕士研究生。研究方向:行人重识别。
  • 基金资助:
    天津师范大学研究生科研创新项目(2022KYCX033Z)

Image Style Transfer Algorithm Based on Improved Generative Adversarial Network

WANG Shengxiong, LIU Ruian, YAN Da   

  1. School of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
  • Received:2022-04-06 Online:2024-06-15 Published:2024-06-20
  • Supported by:
    Tianjin Normal University Research Innovation Project for Postgraduate Students(2022KYCX033Z)

摘要:

图像风格迁移是图像处理领域的研究热点,但目前风格迁移模型存在生成图像细节模糊、风格纹理的色彩效果较差以及模型参数过多等问题。文中提出了一种基于改进循环一致性生成对抗网络的图像风格迁移方法,通过加入Ghost卷积模块和反残差改进模块来优化生成器网络结构,以此降低模型参数量和计算成本。同时能增强网络的特征提取能力,在损失函数中加入内容风格损失项、颜色重建损失项和映射一致性损失项来改善模型的生成能力,提升生成图像质量。实验结果表明,所提改进方法具有较强的风格迁移能力,有效增强了生成图像的内容细节和风格纹理的色彩效果,显著提升了图像质量,模型性能也得到了改善。

关键词: 图像处理, 图像风格迁移, 生成对抗网络, CycleGAN, Ghost卷积, 反残差模块, 特征提取, 颜色重建损失

Abstract:

Image style transfer has been a research hotspot in the field of image processing, but the current style transfer models have problems such as fuzzy details of generated image, the poor color effect of style texture and excessive model parameters. An image style transfer method based on improved cycle-consistent generative adversarial network is proposed in this study. The generator network architecture is improved by adding the Ghost convolution module and the inverted residual improved module to reduce the number of model parameters and computation cost, as well as enhance the feature extraction capability of the network. And the content style loss item, the color reconstruction loss item and the map identity loss item are added to the loss function for enhancing generative capability of the model and improving the quality of generated images. The experimental results show that the proposed method has a stronger ability for style transfer, which enhances the content details and color effect of style texture from generated images effectively, improves the image quality significantly, and the model performance has also been improved well.

Key words: image processing, image style transfer, generative adversarial network, CycleGAN, Ghost convolution, inverted residual module, feature extraction, color reconstruction loss

中图分类号: 

  • TP391.41