电子科技 ›› 2024, Vol. 37 ›› Issue (9): 14-19.doi: 10.16180/j.cnki.issn1007-7820.2024.09.003

• • 上一篇    下一篇

基于火烈鸟搜索算法的天线优化设计

黄泽明, 单志勇   

  1. 东华大学 信息科学与技术学院,上海 201620
  • 收稿日期:2023-02-27 出版日期:2024-09-15 发布日期:2024-09-20
  • 作者简介:黄泽明(1998-),男,硕士研究生。研究方向:群智能算法、天线优化。
    单志勇(1967-),男,博士,副教授。研究方向:电磁场与微波技术、无线通信、人工智能。
  • 基金资助:
    国家自然科学基金(61602110)

Antenna Optimal Design Based on Flamingo Search Algorithm

HUANG Zeming, SHAN Zhiyong   

  1. College of Information Science and Technology,Donghua University,Shanghai 201620,China
  • Received:2023-02-27 Online:2024-09-15 Published:2024-09-20
  • Supported by:
    National Natural Science Foundation of China(61602110)

摘要:

在天线优化设计领域,传统电磁软件采用参数扫描方法,计算量大且效率低。针对此问题,文中提出了一种基于火烈鸟搜索算法和HFSS(High Frequency Structural Simulator)联合优化的设计方法,并通过MATLAB和HFSS联合仿真完成实现。在MATLAB中编写天线设计和仿真代码,生成VBS(Visual Basic Script)脚本供HFSS调用,HFSS将电磁仿真的结果返回给适应度函数计算。由火烈鸟搜索算法根据适应度值进行粒子寻优,直至找出最优结果,确定最优天线尺寸参数。文中联合仿真设计在迭代23次时寻得最优尺寸参数,使得优化后的天线在两个工作频段对应的适应度值由-483.37 dB优化到-771.15 dB。仿真结果表明,所提算法具有较强寻优能力,收敛速度块,可有效提升天线优化设计的效率。

关键词: 火烈鸟搜索算法, 天线联合仿真, 天线优化, 双频微带天线, HFSS, MATLAB, 自动寻优, 回波损耗

Abstract:

In the field of antenna optimization design, traditional electromagnetic softwares adopt the method of sweeping with parameter, which causes the problems of large amount of calculation and low efficiency. In view of this problem, a joint optimized design based on flamingo search algorithm and HFSS (High Frequency Structural Simulator) is proposed in this study. This method is realized through the co-simulation of MATLAB and HFSS. MATLAB generates a VBS (Visual Basic Script) script for HFSS to call by writing the code of the design and simulation about antenna in MATLAB. HFSS returns the result of electromagnetic simulation to the function about fitness calculation. The flamingo search algorithm optimizes the particle position according to the fitness value until the optimal result is found and the optimal antenna size parameters are determined. In the co-simulation design, the optimal size parameters are found after 23 iterations, so that the fitness value of the optimized antenna in the two working frequency bands is optimized from -483.37 dB to -771.15 dB. The results of simulation show that the proposed algorithm has strong optimization ability and fast speed of convergence, which significantly improves the efficiency of the design of antenna optimization.

Key words: flamingo search algorithm, antenna co-simulation, antenna optimization, dual-band microstrip antenna, HFSS, MATLAB, automatic optimization, return loss

中图分类号: 

  • TN820