摘要:
能效分级是能效测评的基础,传统的能效分级方法单一且有局限性。文中提出一种智能化的评级方法,将神经网络应用于电力用户能效分析中,建立了基于神经网络的能效评级模型,从而不用给定某个特定的显式数学表达式。系统以RBF神经网络为核心建立模型,使用正交最小二乘法学习。综合考虑电能能效、电能污染能效和经济能效,可实时有效地进行能效分析及智能评级,并给出量化节能方案。仿真及实例计算表明,电力用户实时能效评级的RBF模型操作简捷、适用性强、实时性高,且具有较强的实用价值。
中图分类号:
马立新,朱润. 实时能效分析及智能评级方法[J]. , 2015, 28(6): 1-.
MA Lixin,ZHU Run. Research on Real Time Energy Efficiency Assessment and Intelligent Rating Method[J]. , 2015, 28(6): 1-.