›› 2015, Vol. 28 ›› Issue (7): 90-.

• 论文 • 上一篇    下一篇

一种基于社会化标签的协同过滤推荐算法

王宝林,韩帅帅,张德海   

  1. (西安电子科技大学 电子工程学院,陕西 西安 710071)
  • 出版日期:2015-07-15 发布日期:2015-07-13
  • 作者简介:王宝林(1991—),男,硕士研究生。研究方向:Web信息系统与个性化推荐。E-mail:xidiancadwbl@163.com
  • 基金资助:

    中央高校基本科研业务费资助项目(JB140235)

Collaborative Filtering Recommendation Algorithm Based on Social Tags

WANG Baolin,HAN Shuaishuai,ZHANG Dehai   

  1. (School of Electronic Engineering,Xidian University,Xi'an 710071,China)
  • Online:2015-07-15 Published:2015-07-13

摘要:

为了减少社会化标签的语义模糊和冗余给基于标签的协同过滤算法带来的噪声,利用群体智慧选择流行标签对用户和资源建模,在此基础上设计了基于流行标签的协同过滤算法。实验证明,该算法降低了标签噪声,并提高了传统的基于标签协同过滤算法的准确性。

关键词: 社会化标签, 推荐系统, 协同过滤, 标签噪声

Abstract:

In order to reduce the noise of the tag-based collaborative filtering algorithm caused by the semantic ambiguity and redundancy of social tags,the popular tags are selected by the wisdom of crowds to profile users and resources.Then a collaborative filtering algorithm is designed based on the popular tags.The experiment shows that the proposed algorithm has reduced the noise of tags and improved the precision of the traditional tag-based collaborative filtering algorithm.

Key words: social tags;recommender systems;collaborative filtering;noise of tags

中图分类号: 

  • TP18