›› 2015, Vol. 28 ›› Issue (8): 102-.

• 论文 • 上一篇    下一篇

压缩感知观测矩阵的优化算法

田香玲,席志红   

  1. (哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001)
  • 出版日期:2015-08-15 发布日期:2015-08-15
  • 作者简介:田香玲(1988—),女,硕士研究生。研究方向:非线性信号与图像处理。E-mail:229575630@qq.com。 席志红(1965—),女,教授,博士生导师。研究方向:图像处理,模式识别,嵌入式系统。

An Optimization Algorithm for Measurement Matrix in Compressed Sensing

TIAN Xiangling,XI Zhihong   

  1. (College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
  • Online:2015-08-15 Published:2015-08-15

摘要:

为克服基于压缩感知的图像重构算法存在的不足,文中对观测矩阵设计方法进行了改进,并根据稀疏信号的特点对观测矩阵加权,令奇异值分解得到的对角阵对角线上的元素全部为1。通过仿真实验表明,将改进后的矩阵作为压缩感知算法的观测矩阵,在大压缩比时PSNR值约提高(1~2 dB),在小压缩比较时PSNR值提高了(8~9 dB)。

关键词: 压缩感知, 稀疏表示, 观测矩阵, 重构算法, 奇异值分解

Abstract:

In recent years,the emergence of compressed sensing has broken the limit of Nyquist sampling.The original signal can be recovered accurately by observed values,which is much less than the length of original signal.But now the theory of compressed sensing is not mature enough,and the image reconstruction accuracy is not ideal.In this paper,the design method for the observation matrix has been improved by firstly giving weights to the observation matrix according to the characteristics of sparse signal and then making all the elements on the diagonal of the diagonal matrix obtained by the singular value of weighted matrix to be 1.Experimental results show that the value of PSNR has increased by about 1~2 dB at large compression ratios,by almost 8~9 dB at small compression ratios with the improved matrix used as observation matrix of compressed sensing.

Key words: compressed sensing;sparse representation;observation matrix;reconstruction algorithm;singular value decomposition

中图分类号: 

  • TP391.41