›› 2016, Vol. 29 ›› Issue (1): 152-.

• 论文 • 上一篇    下一篇

基于改进的混合模式个性化选课推荐技术研究

齐婷,佟国香   

  1. (1.上海理工大学 光电信息与计算机工程学院,上海 200093;2.上海市现代光学系统重点实验室,上海 200093)
  • 出版日期:2016-01-15 发布日期:2016-02-25
  • 作者简介:齐婷(1990—),女,硕士研究生。研究方向:个性化推荐技术。佟国香(1968—),女,副教授,硕士生导师。研究方向:计算机控制应用等。
  • 基金资助:

    上海市教育委员会科研创新重点基金资助项目(10ZZ94;12YZ094)

Research on Improved Personalized Courses Recommendation Technology Based on Mixed Mode

QI Ting,TONG Guoxiang   

  1. (1.School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;
    2.Shanghai Key Laboratory of Modern Optical Systems,Shanghai 200093,China)
  • Online:2016-01-15 Published:2016-02-25

摘要:

针对高等学校学生选课系统中存在的缺乏个性化课程推荐、选课效率较低的问题,通过对个性化推荐技术的分析研究,提出了基于内容、项目及用户属性的改进混合模式算法,并将该算法应用到选课系统中,用MACE数据集对算法进行验证。结果表明,该算法解决了个性化推荐技术中的冷启动问题,相关指标有明显提高,实现了课程与新课程的个性化推荐,并减少了选课的盲目性。

关键词: 个性化推荐, 混合模式, 相似度, 用户聚类

Abstract:

Problems of lacking in individualized curriculum recommendations and inefficiency exist in current course selection systems of institutions of higher education.In allusion to these limitations,this paper presents a improved mixed model algorithm based on the content,project and user attribute-value through analysis and study of personalized recommendation technology.The proposed algorithm has been successfully applied to the elective system.Experimental results indicate that the proposed approach can solve cold-start technology in personalized recommendation algorithm,improve the related indicators significantly,achieve a personalized recommendation and new courses recommendation and reduce the blindness by the MACE data sets.

Key words: personalized recommendation;mixed mode;similarity;user clustering

中图分类号: 

  • TP18