›› 2016, Vol. 29 ›› Issue (1): 29-.

• 论文 • 上一篇    下一篇

基于混合聚类算法的客户细分策略研究

王虹,孙红   

  1. (1.上海理工大学 光电信息与计算机工程学院,上海 200093;2.上海理工大学 上海现代光学系统重点实验室,上海 200093)
  • 出版日期:2016-01-15 发布日期:2016-02-25
  • 作者简介:王虹(1990—),女,硕士研究生。研究方向:大数据,数据挖掘与数据分析。孙红(1964—),女,副教授。研究方向:计算机网络通信与云计算等。
  • 基金资助:

    国家自然科学基金资助项目(61170277;61472256);上海市教委科研创新重点基金资助项目(12zz137);沪江基金资助项目(C14002)。

Customer Segmentation Strategy Based on Hybrid Clustering Algorithm

WANG Hong,SUN Hong   

  1. (1.School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;
    2.Shanghai Key Lab of Modern Optical System,University of Shanghai for Science and Technology,Shanghai 200093,China)
  • Online:2016-01-15 Published:2016-02-25

摘要:

针对层次聚类法和 K-means 聚类法的缺陷和不足,提出将二者相结合的改进算法,既解决了层次聚类法伸缩性差的问题,又解决了 K-means聚类法对初始聚类中心敏感的问题。通过对改进算法的计算复杂度分析并利用 UCI 数据库的测试数据对改进算法进行测试。结果表明,混合聚类算法使样本聚类的准确率提高到94%,并有更高的执行效率和更好地实用性。此外,将此算法应用到汽车销售公司的客户细分管理中,得出了差别化明显的客户细分类别,表明此改进算法具有更强的客户细分能力以及客户行为特征的解释能力。

关键词: 层次聚类法, K-means算法, 混合聚类算法, 客户细分, 汽车销售

Abstract:

An improved algorithm is put forward to fuse the hierarchical clustering method and the K- means clustering method to solve both the poor scalability of the former and the sensitivity to the initial clustering center of the latter.The computing complexity analysis of the improved algorithm and the test data of UCI database testing results show that the hybrid clustering algorithm increases the sample clustering accuracy to 94% with a higher efficiency and better practicability.In addition,this algorithm is applied to the car sales company in the management of customer segmentation,where the differential is obtained obviously of customer segmentation categories,showing that the improved algorithm has higher detection rate and stronger interpretation ability on customer behaviors.

Key words: hierarchical clustering;K-means algorithm;hybrid clustering algorithm;customer segmentation;auto sale

中图分类号: 

  • TP301.6