›› 2016, Vol. 29 ›› Issue (11): 129-.

• 论文 • 上一篇    下一篇

一种基于压缩感知的迭代重建算法

李 影,徐伯庆   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2016-11-15 发布日期:2016-11-24
  • 作者简介:李影(1990-),女,硕士研究生。研究方向:信号与信息处理。徐伯庆(1958-),男,博士,副教授。研究方向:通信及图像处理。

An Iterative Image Reconstruction Algorithm based on Compressed Sensing

LI Ying, XU Boqing   

  1. (School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
  • Online:2016-11-15 Published:2016-11-24

摘要:

迭代重建算法是一种经典的CT图像重建算法,适合于不完全投影数据的图像重建,其缺点是重建速度慢。为提高图像重建的质量和速度,文中利用压缩感知理论提出了一种改进的基于图像全变差最小的迭代重建算法。该算法在迭代的不同阶段对迭代初始值做不同处理,并在每次迭代结束后采用梯度下降法调整全变差。实验结果表明,该算法不但提高了图像重建质量,同时也加快了迭代图像的收敛速度。

关键词: 迭代重建算法, 压缩传感, 图像全变差

Abstract:

The iterative image reconstruction algorithm is a classic method for the image reconstruction of computed tomography (CT), which can recover the image from incomplete projection data. However, the Iterative image reconstruction algorithm suffers slow reconstruction speed. With the theory of compressed sensing, an improved algorithm based on the minimization of the image total variation (TV) is proposed to improve the quality of the recovered image and the speed of reconstruction. In the improved algorithm, the initial value of iteration differs in different stages of the iteration, and the total variation is adjusted by the gradient descend method after each iteration. Experimental results indicate that the proposed algorithm not only improves the quality of image reconstructed, but also increases the convergence speed of the iteration image.

Key words: iterative image reconstruction algorithm, compressed sensing, image total variation

中图分类号: 

  • TN919.8