›› 2016, Vol. 29 ›› Issue (11): 137-.
王富强 1,张振华 1,朱 然 2
WANG Fuqiang1, ZHANG Zhenhua1, ZHU Ran2
摘要:
模糊C均值聚类对初始参数有着较强的依赖性,文中针对其对初始聚类中心敏感的问题,提出利用量子粒子群来优化FCM的初始聚类中心。粒子群优化算法具有较强的全局搜索能力,但局部搜索能力不足,因此借助于量子理论,将粒子群量子化,借助量子旋转门改变粒子的移动,同时利用量子非门增加种群的多样性,加强粒子群优化算法的局部寻优能力。并最终利用量子粒子群优化算法搜寻FCM算法的初始聚类中心,通过实验仿真表明,改进的算法在加快搜索速度的同时,能获得较为稳定的聚类中心且分割效果明显优于标准的FCM算法。
中图分类号: