›› 2016, Vol. 29 ›› Issue (7): 72-.

• 论文 • 上一篇    下一篇

基于压缩感知的三维人体点云的压缩及重建

刘佳   

  1. (西安电子科技大学 电子工程学院,陕西 西安 710071)
  • 出版日期:2016-07-15 发布日期:2016-07-15
  • 作者简介:刘佳(1990-),男,硕士研究生。研究方向:物联网技术与Web开发。

Compression and Recovery of 3D Body Point Clouds Based on Compressed Sensing

LIU Jia   

  1. (School of Electronic Engineering, Xidian University, Xi’an 710071, China)
  • Online:2016-07-15 Published:2016-07-15

摘要:

经过激光扫描得到的三维人体点云数据量庞大,给模型的存储和传输带来困难,影响了其在体域网中的应用。针对这一问题,将压缩感知理论应用于人体点云模型的压缩与重建中。在压缩之前使用改进的三维栅格法做点云精简,针对人体点云的特点对数据进行分块稀疏变换,利用正交匹配追踪算法重建原始模型。最终实验重建误差约为 ,证实了该算法的有效性和可行性。

关键词: 压缩感知, 点云精简, 分块稀疏, 匹配追踪

Abstract:

With higher precision of the laser 3D scanning, the growing point cloud model data lead to the difficulty of data storage and transmission, thus limiting its application in the body network. In order to solve this problem, the compressed sensing technique is applied to the compression and reconstruction of human body point clouds model to perform data simplification processing by the improved three-dimensional grid method before compression. In light of the characteristics of human point cloud data, the block sparse transformation and orthogonal matching pursuit algorithm is applied to reconstruct the original model. The final experimental error is only  , which confirms the validity and feasibility of the algorithm.

中图分类号: 

  • TP317.4