电子科技 ›› 2019, Vol. 32 ›› Issue (12): 48-52.doi: 10.16180/j.cnki.issn1007-7820.2019.12.010

• • 上一篇    下一篇

视频监控行人流量统计系统的设计

殷涛,崔佳冬   

  1. 杭州电子科技大学 新型电子器件与用研究所,浙江 杭州 310018
  • 收稿日期:2018-12-16 出版日期:2019-12-15 发布日期:2019-12-24
  • 作者简介:殷涛(1994-),男,硕士研究生。研究方向:数字图像处理。|崔佳冬(1974-),男,副教授。研究方向:嵌入式系统及物联网应用。
  • 基金资助:
    国家自然科学基金国际(地区)合作与交流资助项目(61411136003)

Designof Pedestrian Flow Statistics System on Video Monitoring

YIN Tao,CUI Jiadong   

  1. Institute of Electron Devices & Application,Hangzhou Dianzi University,Hangzhou 310000,China
  • Received:2018-12-16 Online:2019-12-15 Published:2019-12-24
  • Supported by:
    National Natural Science Foundation International (Regional) Cooperation and Exchange Funding Project(61411136003)

摘要:

针对当前行人统计方式落后、非实时性、统计数据滞后等问题,文中提出采用智能视频监控、图像识别的方式实时统计行人流量。系统根据积分通道思想统计行人目标特征,通过Adaboost算法训练分类器对图像帧中的行人目标进行定位、识别。文中在已识别目标的基础上采用CPU多任务模型改进核相关滤波算法对目标进行实时跟踪、统计得到行人流量。测试结果表明,系统能实时识别、跟踪、统计行人目标,整体功能稳定,平均识别率为93%,改进多任务模型使得跟踪速率提高约20%。

关键词: 人流量统计, 实时监控, 积分通道特征, 核相关滤波, 多任务跟踪, Adaboost算法

Abstract:

Aiming at the problems of backward pedestrian statistics, non-real-time and backward statistical data, intelligent video surveillance and image recognition were proposed for real-time pedestrian traffic statistics. The system calculated the pedestrian target characteristics according to the integral channel idea, and used the Adaboost algorithm to train the classifier to locate and identify the pedestrian target in the image frame. Based on the identified targets, the CPU multi-task model was used to improve the kernel correlation filtering algorithm to track the target in real time and obtain the pedestrian traffic. The test results showed that the system can recognize, track and count pedestrian targets in real time. The average recognition rate was 93%, and the improved multi-task model increased the tracking rate by about 20%.

Key words: pedestrian flow statistics, real-time monitoring, integral channel features, kernel correlation filtering, multi-task tracking, Adaboost algorithm

中图分类号: 

  • TP311