电子科技 ›› 2019, Vol. 32 ›› Issue (7): 60-64.doi: 10.16180/j.cnki.issn1007-7820.2019.07.012

• • 上一篇    下一篇

一种面向交通标志识别系统的图像识别算法

张长青,杨楠   

  1. 长安大学 信息工程学院,陕西 西安 710064
  • 收稿日期:2018-12-11 出版日期:2019-07-15 发布日期:2019-08-14
  • 作者简介:张长青(1970-),男,博士,讲师。研究方向:智能交通与控制。
  • 基金资助:
    国家自然科学基金(61572083)

An Image Recognition Algorithm for Traffic Sign Recognition System

ZHANG Changqing,YANG Nan   

  1. School of Information Engineering,Chang’an University, Xi’an 710064,China
  • Received:2018-12-11 Online:2019-07-15 Published:2019-08-14
  • Supported by:
    National Natural Science Foundation of China(61572083)

摘要:

目前各类面向交通标志识别系统的机器算法大多存在计算复杂度高、实时性差等问题,文中基于ELM模型,加入改进的PCA方法,提出了一种面向交通标志识别系统的PCA-ELM图像识别算法。该算法依次通过HOG特征的提取、改进的PCA方法降维、ELM模型的特征训练,实现交通标志图像的识别。经过实验测试,发现该算法能够较好地兼顾识别率和计算复杂度,符合交通标志识别系统图像识别的准确性与实时性要求,具有一定的实用价值。

关键词: 交通标志, 图像识别, HOG, PCA, ELM

Abstract:

Most of the machine algorithms for the traffic sign recognition system have problems of high computational complexity and poor real-time performance. Hence, based on the ELM model and the improved PCA method, an image recognition algorithm called PCA-ELM for the traffic sign recognition system was proposed. With the help of the extraction of HOG features, dimensionality reduction of improved PCA method, and the feature training of ELM model, the algorithm could realize the recognition of traffic sign images. Being tested and compared, it was found that the PCA-ELM algorithm had high recognition rate with suitable or even lower computational complexity, which well meets the accuracy and real-time requirements of image recognition for the traffic sign recognition system and had certain practical value.

Key words: traffic sign, image recognition, HOG, PCA, ELM

中图分类号: 

  • TP393