电子科技 ›› 2020, Vol. 33 ›› Issue (9): 63-68.doi: 10.16180/j.cnki.issn1007-7820.2020.09.011

• • 上一篇    下一篇

基于Faster R-CNN的钢轨表面缺陷识别研究

苏烨1,李筠1,杨海马1,刘瑾2,江声华3   

  1. 1. 上海理工大学 光电信息与计算机工程学院,上海 200093
    2. 上海工程技术大学 电子电气工程学院,上海201620
    3. 上海瑞纽机械股份有限公司,上海 201314
  • 收稿日期:2019-06-17 出版日期:2020-09-15 发布日期:2020-09-12
  • 作者简介:苏烨(1995-),男,硕士研究生。研究方向:智能检测与控制。|杨海马(1979-),男,博士,副教授。研究方向:光电检测设备开发及信号处理算法应用。
  • 基金资助:
    国家自然科学基金(61701296);国家自然科学基金(U1831133);上海市自然科学基金(17ZR1443500);上海航天科技创新基金(SAST2017-062);宝山区科技创新专项基金(17-C-21)

Research on Rail Surface Defect Recognition Based on Faster R-CNN

SU Ye1,LI Jun1,YANG Haima1,LIU Jin2,JIANG Shenghua3   

  1. 1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
    2. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
    3. Shanghai Ruiniu Machinery Crop,Shanghai 201314,China
  • Received:2019-06-17 Online:2020-09-15 Published:2020-09-12
  • Supported by:
    National Natural Science Foundation of China(61701296);National Natural Science Foundation of China(U1831133);Shanghai Natural Science Foundation(17ZR1443500);Shanghai Aerospace Science and Technology Innovation Fund(SAST2017-062);Baoshan District Science and Technology Innovation Special Fund(17-C-21)

摘要:

外界因素常会干扰钢轨表面缺陷检测仪器,导致其精度和效率降低。文中研究了一种基于Faster R-CNN网络检测钢轨表面缺陷的方法。该方法将预处理后的图像进行反转,利用Radon变换实现钢轨图像的投影。投影曲线中,利用钢轨长度为定值且灰度值小于图像平均值的特性,完成对钢轨表面区域的提取。然后通过区域建议网络提取候选区域,并与Fast R-CNN网络的区域建议对比分析,完成Faster R-CNN网络对钢轨的表面缺陷检测。试验数据表明,裂缝、疤痕、磨损和划伤4种缺陷的识别精度分别为92.17%、91.85%、93.45%和93.27%,证明使用该方法能够高效而又准确地识别钢轨的表面缺陷。

关键词: 钢轨表面缺陷, 预处理, Radon变换, 灰度值, 区域建议网络, Faster R-CNN网络

Abstract:

External factors usually have effects on the instrument used to detect rail surface defect, resulting in poor accuracy and efficiency of instrument. For this problem, a method for detecting rail surface defects based on the Faster R-CNN network is investigated. The method reverses the preprocessed image and realizes the projection of rail image with Radon transform. In the projection curve, the rail surface area is extracted by using the characteristics that the rail length is fixed and the gray value is less than the average value of the image. Then, the candidate region is extracted through the regional proposal network and compared with the regional recommendation of Fast R-CNN network for the detection of surface defects of rail by the Faster R-CNN networks. According to the test data, the accuracy of crack, scar, abrasion and scratch is 92.17%, 91.85%, 93.45% and 93.27% respectively, which verifies the efficiency and accuracy of the proposed method in identify the surface defects of rail.

Key words: rail surface defect, preprocessing, radon transform, grey value, regional proposal network, Faster R-CNN networks

中图分类号: 

  • TP278