电子科技 ›› 2021, Vol. 34 ›› Issue (2): 12-20.doi: 10.16180/j.cnki.issn1007-7820.2021.02.003

• • 上一篇    下一篇

基于水平集的医学图像分割算法

房巾莉1,吕毅斌1,王樱子2,唐胜男1,武德安3   

  1. 1.昆明理工大学 理学院,云南 昆明 650500
    2.昆明理工大学 计算中心,云南 昆明 650500
    3.电子科技大学 数学科学学院,四川 成都 611731
  • 收稿日期:2019-12-02 出版日期:2021-02-15 发布日期:2021-01-22
  • 作者简介:房巾莉(1994-),女,硕士研究生。研究方向:数字图像处理、医学图像分割。|吕毅斌(1972-),男,博士,副教授。研究方向:科学计算、图像处理。|王樱子(1972-),女,副教授。研究方向:科学计算、数学应用软件。
  • 基金资助:
    国家自然科学基金(11461037)

A Novel Medical Image Segmentation Algorithm Based on Level Set

FANG Jinli1,LÜ Yibin1,WANG Yingzi2,TANG Shengnan1,WU Dean3   

  1. 1. Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China
    2. Computer Center,Kunming University of Science and Technology,Kunming 650500,China
    3. School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731,China
  • Received:2019-12-02 Online:2021-02-15 Published:2021-01-22
  • Supported by:
    National Natural Science Foundation of China(11461037)

摘要:

针对具有灰度不均效应的医学图像分割问题,文中提出了一种快速结合全局和局部信息的水平集模型,即HLSGL。基于C-V水平集分割算法的全局信息,通过计算图像各像素点的局部拟合均值,引入局部信息能量项,使全局与局部信息叠加构成驱动力项,保证对图像边缘具有较好的局域化效果。在构造的驱动力项中引入一种新的速度停止函数,使分割过程能自适应地调节曲线演化速率,提高了分割效率。将HLSGL模型应用于不同种类医学图像,实验表明该方法可以高效地分割含噪声、弱边界、灰度不均的医学图像,得到较完整的轮廓曲线。与其他水平集模型的对比实验表明,HLSGL模型的准确性、鲁棒性、分割效率均得到改善。

关键词: 医学图像分割, 灰度不均, 水平集, C-V模型, 全局和局部, 速度停止函数

Abstract:

In view of the common inhomogeneous intensity effect in medical images, a hybrid level set model combining global and local term is proposed, namely HLSGL. Based on the global information of the C-V level set segmentation algorithm, the local information energy term is introduced by calculating the local fitting average of each pixel of the image, so that the global and local information can be superimposed to form the driving force term, ensuring better localization effect on the edge of the image. A new speed stopping function is introduced into the driving force term to adaptively adjust the curve evolution rate in segmentation process, improve segmentation efficiency. In addition, HLSGL is applied to different kinds of medical images in the present study, and experiments results show that the HLSGL model can efficiently segment medical images with noise, weak boundaries and inhomogeneous intensity to obtain a more complete contour curve. Compared with other level set models,the accuracy, robustness and segmentation efficiency of the HLSGL model are significantly improved.

Key words: medical image segmentation, inhomogeneous intensity, level set, C-V model, global and local, speed stopping function

中图分类号: 

  • TP391.41