电子科技 ›› 2021, Vol. 34 ›› Issue (2): 21-26.doi: 10.16180/j.cnki.issn1007-7820.2021.02.004

• • 上一篇    下一篇

基于CNN和LSTM的睡眠呼吸暂停检测算法

葛靖,刘子龙   

  1. 上海理工大学 光电信息与计算机工程学院,上海200093
  • 收稿日期:2019-11-05 出版日期:2021-02-15 发布日期:2021-01-22
  • 作者简介:葛靖(1995-),男,硕士研究生。研究方向:信号处理、深度学习。|刘子龙(1972-),男,副教授。研究方向:控制科学与控制理论,智能检测与控制。
  • 基金资助:
    国家自然科学基金(61573246)

The Algorithm Based on CNN and LSTM for Sleep Apnea Syndrome Detection

GE Jing,LIU Zilong   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2019-11-05 Online:2021-02-15 Published:2021-01-22
  • Supported by:
    National Natural Science Foundation of China(61573246)

摘要:

睡眠呼吸暂停是一种常见的睡眠障碍,与多种疾病发生有关。文中提出了使用深度学习方法来实现睡眠呼吸暂停事件检测。心电信号两个阶段的预处理分别作为CNNLSTM模型的输入:CNN模型以原始ECG信号作为输入,通过卷积自动提取特征来识别睡眠呼吸暂停;LSTM模型使用心电的间接信号作为输入,从RR间期和呼吸信号中自动提取特征。实验表明,LSTM模型准确度较高为87.4%,与传统方法性能接近。文中所提方法结合了人工特征提取和深度学习优点,比传统分类方法更具适用性。

关键词: 卷积神经网络, 长期短期记忆, 睡眠呼吸暂停, 心电信号, 预处理, 特征提取

Abstract:

Sleep apnea is a common sleep disorder, which is associated with multiple diseases. This study proposes deep learning methods to detect sleep apnea events. The two stages of ECG signal preprocessing are used as inputs to the CNN and LSTM models, respectively. The CNN model takes the original ECG signal as input and automatically extracts features through convolution to identify sleep apnea. The LSTM model uses ECG's indirect signal as input and automatically extractes features from RR intervals and respiratory signals. Experiments show that the LSTM model has a high accuracy of 87.4%, which is close to the performance of the traditional methods. The proposed method combines the advantages of artificial feature extraction and deep learning, and is more applicable than the traditional classification methods.

Key words: CNN, LSTM, sleep apnea, electrocardiograph signal, preprocessing, feature extraction

中图分类号: 

  • TP183