[1] |
余晓敏, 涂岳文, 黄超, 等. 基于心电信号的睡眠呼吸暂停综合征检测算法[J]. 生物医学工程学杂志, 2013,30(5):999-1002.
|
|
Yu Xiaomin, Tu Yuewen, Huang Chao, et al. An algorithm based on ECG signal for sleep apnea syndrome detection[J]. Journal of Biomedical Engineering, 2013,30(5):999-1002.
|
[2] |
Mendonça F, Mostafa S S, Ravelo-García A G, et al.A review of obstructive sleep apnea detection approaches[J]. IEEE Journal of Biomedical and Health Informatics, 2018,23(2):825-837.
doi: 10.1109/JBHI.2018.2823265
pmid: 29993672
|
[3] |
韦张跃昊, 钱升谊. 基于滤波重构和卷积神经网络的心电信号分类[J].电子科技, 2019(11):1-6.
|
|
Wei Zhangyuehao, Qian Shengyi. ECG signal classification based on filtering-reconstruction and convolutional neural network[J].Electronic Science and Technology, 2019(11):1-6.
|
[4] |
Penzel T, Moody G B, Mark R G, et al. The apnea-ECG database [C].Cambridge:Computers in Cardiology, 2000.
|
[5] |
郭永丛, 司玉娟. 基于心电信号提取呼吸信号的算法[J]. 吉林大学学报(信息科学版), 2016,34(3):28-34.
|
|
Guo Yongcong, Si Yujuan. Respiratory signal extraction algorithm based on ECG[J]. Journal of Jilin University(Information Science Edition), 2016,34(3):28-34.
|
[6] |
林剑华. 基于心电信号的呼吸检测算法及其在睡眠分析中的应用研究[D]. 武汉:华中科技大学, 2017.
|
|
Lin Jianhua. The study of ECG-based respiration detection algorithm and its application in sleep analysis[D]. Wuhan:Huazhong University of Science and Technology, 2017.
|
[7] |
张异凡, 黄亦翔, 汪开正, 等. 用于心律失常识别的LSTM和CNN并行组合模型[J]. 哈尔滨工业大学学报, 2019,51(10):76-82.
|
|
Zhang Yifan, Huang Yixiang, Wang Kaizheng, et al. Arrhythmia classification using parallel combination of LSTM and CNN[J]. Journal of Harbin Institute of Technology, 2019,51(10):76-82.
|
[8] |
黄永锋, 江依鹏, 杨树臣. 基于卷积神经网络的非接触式呼吸暂停算法研究[J]. 智能计算机与应用, 2019,9(4):104-106,111.
|
|
Huang Yongfeng, Jiang Yipeng, Yang Shuchen. Research on non-contact apnea algorithm based on convolutional neural network[J]. Intelligent Computer and Applications, 2019,9(4):104-106,111.
|
[9] |
武悦. 基于心电信号对睡眠呼吸暂停综合征判别算法的研究[D]. 长春:吉林大学, 2018.
|
|
Wu Yue. Research on discriminant algorithm of sleep apnea syndrome based on electrocardiographic signal[D]. Changchun:Jilin University, 2018.
|
[10] |
Erdenebayar U, Kim Y J, Park J U, et al. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram[J].Computer Methods and Programs in Biomedicine, 2019(18):105-115.
|
[11] |
De Chazal P, Sadr N. Sleep apnoea classification using heart rate variability, ECG derived respiration and cardiopulmonary coupling parameters [C].Orlando: IEEE Engineering in Medicine and Biology Society, 2016.
|
[12] |
Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks[J]. IEEE Transactions on Biomedical Engineering, 2015,63(3):664-675.
doi: 10.1109/TBME.2015.2468589
pmid: 26285054
|
[13] |
Banluesombatkul N, Rakthanmanon T, Wilaiprasitporn T. Single channel ecg for obstructive sleep apnea severity detection using a deep learning approach [C].Jeju Island:IEEE Region 10 Conference, 2018.
|
[14] |
Choi S H, Yoon H, Kim H S, et al. Real-time apnea-hypopnea event detection during sleep by convolutional neural networks[J].Computers in Biology and Medicine, 2018(4):123-131.
|
[15] |
Yu H, Guo X. The Detection of Sleep Apnea Hypopnea Syndrome based on Improved BP Neural Network [C]. Shenzhen:IEEE the Third International Conference on Signal and Image Processing, 2018.
|
[16] |
Pathinarupothi R K, Rangan E S, Gopalakrishnan E A, et al. Single sensor techniques for sleep apnea diagnosis using deep learning [C].Park City:IEEE International Conference on Healthcare Informatics, 2017.
|
[17] |
Song C, Liu K, Zhang X, et al. An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2015,63(7):1532-1542.
doi: 10.1109/TBME.2015.2498199
pmid: 26560867
|
[18] |
Martín-González S, Navarro-Mesa J L, Juliá-Serdá G, et al.Heart rate variability feature selection in the presence of sleep apnea: An expert system for the characterization and detection of the disorder[J]. Computers in Biology and Medicine, 2017(91):47-58.
|
[19] |
Li K Y, Pan W F, Li Y F, et al. A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal[J].Neurocomputing, 2018(3):294-303.
|