电子科技 ›› 2021, Vol. 34 ›› Issue (6): 11-16.doi: 10.16180/j.cnki.issn1007-7820.2021.06.002

• • 上一篇    下一篇

基于迁移学习策略的肝纤维化分期诊断方法

翟岳仙1,刘翔1,宋家琳2   

  1. 1.上海工程技术大学 电子电气工程学院,上海 201620
    2.中国人民解放军第二军医大学 长征医院超声诊疗科,上海 200003
  • 收稿日期:2020-02-23 出版日期:2021-06-15 发布日期:2021-06-01
  • 作者简介:翟岳仙(1993-),女,硕士研究生。研究方向:医学图像处理。|刘翔(1972-),男,博士,副教授。研究方向:计算机视觉。
  • 基金资助:
    上海市自然科学基金(19ZR1421500)

Staging Diagnosis of Liver Fibrosis Based on Transfer Learning Strategy

ZHAI Yuexian1,LIU Xiang1,SONG Jialin2   

  1. 1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science,Shanghai 201620,China
    2. Department of Ultrasound Diagnosis and Treatment,Changzheng Hospital,Second Military Medical University of Chinese People’s Liberation Army,Shanghai 200003,China
  • Received:2020-02-23 Online:2021-06-15 Published:2021-06-01
  • Supported by:
    Natural Science Foundation of Shanghai(19ZR1421500)

摘要:

针对肝纤维化四分期准确率较低,S2S3期分期难的问题,文中提出了一种基于迁移学习策略的肝纤维化诊断方法。该方法基于预训练好的深度残差网络模型,随机初始化各层权值参数,加入采用旋转、裁剪patch小块等方法扩充的数据集微调各类参数。经过softmax分类器结合patch小块投票原则,最终得到肝纤维化S0~S1S2S3S4期的分期准确率分别为93.75%、90.63%、87.50%、86.96%。该结果表明,文中方法在基于高频超声图像的肝纤维化定量诊断任务中达到了较好的效果。通过比较分析可知,文中所述方法优于其他已有方法,为临床计算机辅助诊断肝纤维化疾病提供了更加有效的解决方案。

关键词: 肝纤维化, 迁移学习, 深度残差网络, 微调, 投票原则, softmax分类器, 高频超声, 计算机辅助诊断

Abstract:

In view of the problem that the accuracy of classification of liver fibrosis into four stages is low, and the difficulties in distinguishing S2 and S3 stages, a method of liver fibrosis’s diagnosis based on transfer learning strategy is proposed in this study. This method is based on a pre-trained deep residual network model, randomly initializes the weight parameters of each layer, and adds a dataset expanded by the method of rotation and cutting patch blocks to fine-tune various parameters. After the softmax classifier combined with the patch block voting principle, the accuracy rates of liver fibrosis S0~S1S2S3 and S4 stages are 93.75%、90.63%、87.50% and 86.96%, respectively. The proposed method achieves good results in the quantitative diagnosis of liver fibrosis based on high-frequency ultrasound images. The comparative analysis reveales that this method is superior to other existing methods, and provides a more effective solution for clinical computer-aided diagnosis of liver fibrosis diseases.

Key words: liver fibrosis, transfer learning, deep residual network, fine-tuning, voting principle, softmax classifier, high-frequency ultrasound, computer-aided diagnosis

中图分类号: 

  • TP181