电子科技 ›› 2021, Vol. 34 ›› Issue (7): 13-18.doi: 10.16180/j.cnki.issn1007-7820.2021.07.003

• • 上一篇    下一篇

基于Hybrid迭代法的多连通域数值保角变换计算法

唐胜男1,吕毅斌1,王樱子2,房巾莉1,武德安3   

  1. 1.昆明理工大学 理学院,云南 昆明 650500
    2.昆明理工大学 计算中心,云南 昆明 650500
    3.电子科技大学 数学科学学院,四川 成都 611731
  • 收稿日期:2020-04-14 出版日期:2021-07-15 发布日期:2021-07-05
  • 作者简介:唐胜男(1994-),女,硕士研究生。研究方向:科学计算。|吕毅斌(1972-),男,博士,副教授。研究方向:科学计算和图像处理。
  • 基金资助:
    国家自然科学基金(11461037)

Hybrid Iteration Method for Number Conformal Mapping of Multi-Connected Domain

TANG Shengnan1,LÜ Yibin1,WANG Yingzi2,FANG Jinli1,WU Dean3   

  1. 1. Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China
    2. Computer Center,Kunming University of Science and Technology,Kunming 650500,China
    3. School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731,China
  • Received:2020-04-14 Online:2021-07-15 Published:2021-07-05
  • Supported by:
    National Natural Science Foundation of China(11461037)

摘要:

针对模拟电荷法无界多连通区域的数值保角变换问题,文中提出了一种高精度的数值方法,即基于Hybrid迭代法的无界多连通区域的数值保角变换计算法。该方法通过模拟电荷法构造约束方程,对约束方程应用预处理构造对称正定的方程,获得新的模拟电荷和辐角,并构造近似保角变换函数。文中以多连通圆变换为径向狭缝域为例进行数值实验。使用解析函数的最大模原理作为误差的评价指标,并得出了天野法和文中算法的误差曲线。当模拟电荷数N=180,Jordan曲线为C2时,文中算法EA2的误差为1.676 7×10-7,但是天野法EA2的误差为8.597 7×10-4。当模拟电荷数N=180,Jordan曲线为C3时,文中算法EΘ3的误差为5.635 1×10-10, 天野法EΘ3的误差为1.102 5×10-5

关键词: 模拟电荷法, 多连通区域, Hybrid迭代法, 广义迭代法, 投影技术, 数值保角变换, 解析函数, 约束方程

Abstract:

For the problem of numerical conformal transformation of unbounded multi-connected domain of the charge simulation method, this study presents a high-precision numerical method, that is, Hybrid iteration method for number conformal mapping of multi-connected domain. This method constructs a constrain equation by charge simulation method, applies preprocessing to the constrain equation, constructs a symmetric positive definite equation, obtains new charge simulation and angle, and constructs an approximate conformal mapping function. In this study, the numerical experiment is carried out by taking the mapping of multiple connected domain into radial slit domain as an example. The maximum modulus principle of the analytic function is used as the error evaluation index, and the error curves of the Amano method and the algorithm of this study are drawn. When the number of charge simulation is N=180 and the Jordan curve is C2, the error of EA2 the algorithm of this study is 1.676 7×10-7, and the error of EA2 in Amano method is 8.597 7×10-4. When the number of charge simulation is N=180 and the Jordan curve is C3, the error of EΘ3 in the algorithm of this study is 5.635 1×10-10, but the error of EΘ3 in Amano method is 1.102 5×10-5.

Key words: charge simulation method, multi-connected domain, Hybrid iteration method, generalized iteration method, projection technique, numerical conformal transformation, analytic function, constraint equations

中图分类号: 

  • TP391.41