电子科技 ›› 2019, Vol. 32 ›› Issue (9): 32-37.doi: 10.16180/j.cnki.issn1007-7820.2019.09.007

• • 上一篇    下一篇

多人脸跟踪与最佳人脸提取

田雄,吴薇,刘晓尚,吴秀   

  1. 杭州电子科技大学 电子信息学院,浙江 杭州310018
  • 收稿日期:2018-09-07 出版日期:2019-09-15 发布日期:2019-09-19
  • 作者简介:田雄(1991-),男,硕士研究生。研究方向:图像处理、计算机视觉。|吴薇(1963-),男,博士,教授。研究方向:嵌入式系统设计、模式识别与计算机视觉。|刘晓尚(1992-),男,硕士研究生。研究方向:模式识别与计算机视觉。
  • 基金资助:
    国家自然科学基金国际(地区)合作与交流项目(61411136003)(61411136003)

Multi-face Tracking and Optimal Face Extraction

TIAN Xiong,WU Wei,LIU Xiaoshang,WU Xiu   

  1. School of Electronic Information,Hangzhou Dianzi University,Hangzhou 310018,China
  • Received:2018-09-07 Online:2019-09-15 Published:2019-09-19
  • Supported by:
    National Natural Science Foundation of China International (Regional) Cooperation and Exchange Project(61411136003)

摘要:

针对视频人脸识别系统中同一人脸重复识别的问题,文中提出了一种多人脸跟踪与最佳人脸提取的方法。通过ViBe算法提取运动区域,缩小数据处理区域及确定执行人脸检测;利用Haar特征结合AdaBoost算法检测人脸,并根据肤色检测判断是否有误检;利用CamShift算法跟踪人脸;再使用Sobel算子得到清晰的人脸图片。实验表明,该方法下人脸误检率由2.8%降到0.2%,对于100帧视频平均处理时间从原始每帧112 ms降低到了45.6 ms,其处理速度明显提升。

关键词: 人脸检测, 人脸跟踪, AdaBoost, Haar, CamShift, Sobel

Abstract: Aim

ing at the problem that repeated recognition of the same person in video face recognition system, a multi-face tracking and optimal face extraction method was proposed. Using ViBe modeling to extract the motion area, reducing the data processing area; The Haar feature was combined with the AdaBoost algorithm to detect the face, and the skin color detection was used to determine whether there was a false detection; Tracking faces with CamShift algorithm; Using the Sobel operator to got a clearer face image. Experiments showed that under this method, the face false detection rate was reduced from 2.8% to 0.2%. For 100 frames, the average processing time was reduced from 112 milliseconds per frame to 45.6 milliseconds, and the processing speed was significantly improved.

Key words: face detection, face tracking, AdaBoost, Haar, CamShift, Sobel

中图分类号: 

  • TP391.41