电子科技 ›› 2019, Vol. 32 ›› Issue (9): 26-31.doi: 10.16180/j.cnki.issn1007-7820.2019.09.006

• • 上一篇    下一篇

基于安全帽佩戴检测的矿山人员违规行为研究

仝泽友1,2,3,冯仕民1,2,侯晓晴1,2,3,丁恩杰1,2   

  1. 1.中国矿业大学 物联网(感知矿山)研究中心,江苏 徐州 221000
    2.矿山互联网应用技术国家地方联合工程实验室,江苏 徐州 221000
    3.中国矿业大学 信息与控制工程学院,江苏 徐州 221000)
  • 收稿日期:2018-09-06 出版日期:2019-09-15 发布日期:2019-09-19
  • 作者简介:仝泽友(1994-),男,硕士研究生。研究方向:人体行为识别,计算机视觉等。|冯仕民(1983-),男,博士,讲师。研究方向:多传感器智能信息处理、融合与人机交互。
  • 基金资助:
    2017年国家重点研发计划项目(2017YFC0804401)

Recognition of Underground Miners’ Rule-Violated Behavior Based on Safety Helmet Detection

TONG Zeyou1,2,3,FENG Shimin1,2,HOU Xiaoqing1,2,3,DING Enjie1,2   

  1. 1.Internet of Things (Perception Mine) Research Center,China University of Mining and Technology,Xuzhou 221000,China
    2.The National and Local Joint Engineering Laboratory of Internet Application Technology on Mine,Xuzhou 221000,China
    3.Institute of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221000,China
  • Received:2018-09-06 Online:2019-09-15 Published:2019-09-19
  • Supported by:
    2017 National Key R&D Projects(2017YFC0804401)

摘要:

针对矿山人员安全帽佩戴检测问题,文中提出了一种基于人脸的身份识别及安全帽佩戴检测的违规行为识别方法。首先在视频图像中检测人脸以识别身份,然后运用卷积神经网络方法检测人员是否佩戴安全帽,实验阶段将此方法与传统的图像处理方法进行测试对比。实验结果显示,基于深度学习的安全帽检测方法的鲁棒性强于传统方法,在不同条件下识别率和运行效率均优于传统方法,深度学习方法的平均识别率高达97%,所需平均运行时间少于传统方法的1/7。

关键词: 安全帽检测, 身份识别, 违规行为, 深度学习, 准确率与速度, 平均时间

Abstract:

In order to solve the problem of the miner's helmet-wearing recognition, this paper proposed a method of detecting the safety helmet based rule-violated activity. It was based on the face recognition and helmet detection. Firstly, detect the human faced in the picture and identify them, and then detect whether the person wears a safety helmet or not with the Convolutional Neural Network approach. This paper compared the depth learning method with the traditional method in different conditions in the experiments.The experimental results showed that the robustness of the depth learning based safety helmet detection method was stronger than the traditional method. The recognition rate of the depth learning method was higher than that of the traditional approach under different conditions. The deep learning method achieved an average recognition rate of 97% and the average running time was less than 1/7 of that of the traditional approach.

Key words: safety helmet detection, identity recognition, rule-violated activity, deep learning, accuracy and efficiency, average time

中图分类号: 

  • TN399