电子科技 ›› 2024, Vol. 37 ›› Issue (10): 40-47.doi: 10.16180/j.cnki.issn1007-7820.2024.10.006

• • 上一篇    下一篇

考虑新能源出力的分布鲁棒低碳经济调度

张棠茜1, 何宇1, 蒋慕凝1, 秦廷翔2, 朱兆强2, 陈泽霜2   

  1. 1.贵州大学 电气工程学院,贵州 贵阳 550025
    2.中国电建集团贵州工程有限公司,贵州 贵阳 550002
  • 收稿日期:2023-03-09 出版日期:2024-10-15 发布日期:2024-11-04
  • 作者简介:张棠茜(1994-),女,硕士研究生。研究方向:电力系统优化运行。
    何宇(1978-),女,副教授。研究方向:电力系统运行与保护。
  • 基金资助:
    黔科合支撑([2022]一般014)

Distributionally Robust Low-Carbon Economic Dispatch Considering New Energy Output

ZHANG Tangqian1, HE Yu1, JIANG Muning1, QIN Tingxiang2, ZHU Zhaoqiang2, CHEN Zeshuang2   

  1. 1. The Electrical Engineering College,Guizhou University,Guiyang 550025,China
    2. Power China Guizhou Engineering Co.,Ltd.,Guiyang 550002,China
  • Received:2023-03-09 Online:2024-10-15 Published:2024-11-04
  • Supported by:
    Science and Technology Foundation of Guizhou([2022]Ge-neral 014)

摘要:

为提高风电并网能力并降低碳排放,文中提出了一种考虑碳交易和电动汽车的两阶段分布鲁棒低碳经济调度模型。引入碳交易成本,通过电动汽车的储能技术和风力发电的协同配合来降低系统的碳排放量,提高系统对风电的消纳能力。考虑到风电的不确定性,利用历史风电出力数据的矩信息,采用基于通用矩不确定性的分布鲁棒优化方法,建立分布鲁棒模糊集以刻画不确定的风电出力特性。利用对偶原理和线性决策规则将分布鲁棒模型转换为二次规划模型,并通过CPLEX对模型进行求解。实验结果表明,所提方法使风电消纳量提高了11.35%,碳排放量减少了1 579 t,验证了两阶段分布鲁棒模型的有效性和优越性。

关键词: 分布鲁棒优化, 不确定性, 清洁能源, 电动汽车, 碳交易, 线性决策规则, 二次规划, 低碳经济调度

Abstract:

In order to enhance the consumption capacity of wind power and reduce carbon emissions, this study proposes a two-stage distributionally robust low-carbon economic dispatch model that takes into account carbon trading and electric vehicles. Carbon trading costs are introduced in the proposed study, and the cooperation between electric vehicle energy storage and wind power generation is utilized to reduce the system's carbon emissions and to increase the wind power consumption capacity. Considering the uncertainty of wind power, a distributionally robust optimization method based on the general moment uncertainty is established. The fuzzy set of distributionally robust is established using the moment information of the historical wind power output data that can be obtained to characterize the uncertain wind power output characteristics. The distributionally robust model is transformed into a quadratic programming model using duality and linear decision rules, and the model is solved through CPLEX. Experimental results show that the wind power consumption capacity increases by 11.35% and carbon emissions decrease by 1 579 t under the proposed method, which verifies the effectiveness and superiority of the two-stage distributionally robust model.

Key words: distributionally robust optimization, uncertainty, clean energy, electric vehicle, carbon trading, linear decision rule, quadratic programming, low-carbon economic dispatching

中图分类号: 

  • TP301.6