[1] |
张灿, 陈玮, 尹钟. 基于弱监督宫颈细胞图像的语义分割方法[J]. 电子科技, 2021, 34(12):68-74.
|
|
Zhang Can, Chen Wei, Yin Zhong. Semantic segmentation of cervical cell image based on weak supervision[J]. Electronic Science and Technology, 2021, 34(12):68-74.
|
[2] |
Freddie, Bray, Jacques, et al. Global cancer statistics:Globocan estimates of incidence and mortality woroldwide for 36 cancers in 185 countries[J]. Ca:A Cancer Journal for Clinicians, 2018, 68(6):394-424.
|
[3] |
Chitra B, Kumar S S. Recent advancement in cervical cancer diagnosis for automated screening:A detailed review[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(1):251-269.
|
[4] |
Fan J F, Liu J, Xie S, et al. Cervical lesion image enhancement based on conditional entropy generative adversarial network framework[J]. Methods, 2021, 203(5):523-532.
|
[5] |
Rema P N, Matnew A, Thomas S. Performance of colposcopic scoring by modified international federation of cervical pathology and colposcopy terminology for diagnosing cervical intraepithelial neoplasia in a low-resource setting[J]. South Asian Journal of Cancer, 2019, 8(4):218-220.
doi: 10.4103/sajc.sajc_302_18
pmid: 31807480
|
[6] |
Chen K, Xuan Y, Lin A, et al. Esophageal cancer detection based on classification of gastrointestinal CT images using improved Faster RCNN[J]. Computer Methods and Programs in Biomedicine, 2021, 207(2):106-172.
|
[7] |
Li Y X, Chen J W, Xue P, et al. Computer-aided cervical cancer diagnosis using time-lapsed colposcopic images[J]. IEEE Transactions on Medical Imaging, 2020, 39(11):3403-3415.
|
[8] |
Yue Z J, Ding S, Zhao W D, et al. Automatic CIN grades prediction of sequential cervigram image using LSTM with multistate CNN features[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(3):844-854.
doi: 10.1109/JBHI.2019.2922682
pmid: 31199278
|
[9] |
Chen T T, Liu X C, Feng R W, et al. Discriminative cervical lesion detection in colposcopic images with global class activation and local bin excitation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(4):1411-1421.
|
[10] |
Bai B, Du Y Z, Liu P Z, et al. Detection of cervical lesion region from colposcopic images based on feature reselection[J]. Biomedical Signal Processing and Control, 2020, 57(2):1-8.
|
[11] |
Chen J C, Li P, Xu T X, et al. Detection of cervical lesions in colposcopic images based on the RetinaNet method[J]. Biomedical Signal Processing and Control, 2022, 75(1):1-17.
|
[12] |
李燕云, 王永明, 周奇, 等. 基于宫颈上皮与血管特征的阴道镜图像深度学习模型探索[J]. 复旦学报(医学版), 2021, 48(4):435-442.
|
|
Li Yanyun, Wang Yongming, Zhou Qi, et al. Deep learning model exploration of colposcopy image based on cervical epithelial and vascular features[J]. Fudan University Journal of Medical Sciences, 2021, 48(4):435-442.
|
[13] |
Jie H, Li S, Samuel A, et al. Squeeze-and-excitation net-works[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372
pmid: 31034408
|
[14] |
Ashsh V, Noam S, Niki P, et al. Attention is all you need[J]. Learning, 2017, 5(1):90-105.
|
[15] |
Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[J]. Lecture Notes in Computer Science, 2018, 11(2):3-19.
|
[16] |
Li X, Xu Z H, Shen X, et al. Detection of cervical cancer cells in whole slide images using deformable and global context aware Faster RCNN-FPN[J]. Current Oncology, 2021, 28(5):3585-3601.
doi: 10.3390/curroncol28050307
pmid: 34590614
|
[17] |
Wan J J, Chen B, Yu Y T, et al. Polyp detection from colorectum images by using attentive YOLOv5[J]. Diagnostics, 2021, 11(12):2264-2279.
|
[18] |
何龙兵, 那彦. 多光谱可见光图像与高分辨率图像的分维融合[J]. 电子科技, 2011, 24(1):4-8.
|
|
He Longbing, Na Yan. Fractal fusion for more spectral visible light images and high-resolution panchromatic images[J]. Electronic Science and Technology, 2011, 24(1):4-8.
|