[1] |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017:662-667.
|
[2] |
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:537-542.
|
[3] |
Liang X, Lin L, Wei Y, et al. Proposal-free network for instance-level object segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(12):2978-2991.
doi: 10.1109/TPAMI.2017.2775623
|
[4] |
Bai M, Urtasun R. Deep watershed transform for instance segmentation[C]. Holunono: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:862-866.
|
[5] |
冯芙蓉, 张兆功. 目标轮廓检测技术新进展[J]. 计算机科学, 2021, 48(S1):1-9.
|
|
Feng Furong, Zhang Zhaogong. Recent advances for object contour detection technology[J]. Computer Science, 2021, 48(S1):1-9.
doi: 10.1063/1.31600
|
[6] |
Kass M, Witkin A, Terzopoulos D. Snakes:Active contour models[J]. International Journal of Computer Vision, 1988, 1(4):321-331.
doi: 10.1007/BF00133570
|
[7] |
Xie E, Sun P, Song X, et al. Polarmask:Single shot instance segmentation with polar representation[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:561-570.
|
[8] |
Peng S, Jiang W, Pi H, et al. Deep snake for real-time instance segmentation[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:589-593.
|
[9] |
Luo W, Li Y, Urtasun R, et al. Understanding the effective receptive field in deep convolutional neural networks[EB/OL].(2017-01-15) [2022-10-11] https://arxiv.org/abs/1701.04128.
|
[10] |
Zhou X, Wang D, Krähenbühl P. Objects as points[EB/OL].(2019-04-16) [2022-10-11] https://arxiv.org/abs/1904.07850.
|
[11] |
Zhou X, Zhuo J, Krahenbuhl P. Bottomup object detection by grouping extreme and center points[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:377-382.
|
[12] |
Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77(10):354-377.
doi: 10.1016/j.patcog.2017.10.013
|
[13] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
doi: 10.1145/3065386
|
[14] |
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition[EB/OL].(2014-09-04) [2022-10-11] https://arxiv.org/abs/1409.1556.
|
[15] |
Ding X, Zhang X, Han J, et al. Scaling up your kernels to 31×31:Revisiting large kernel design in cnns[C]. New Orleans: Proceedings of the IEEE/CVF Conferenceon Computer Vision and Pattern Recognition, 2022:892-899.
|
[16] |
Liu S, Chen T, Chen X, Chen T, et al. More convnets in the 2020s:Scaling up kernels beyond 51×51 using sparsity[EB/OL].(2022-07-07) [2022-10-11] https://arxiv.org/abs/2207.03620.
|
[17] |
Liu Z, Lin Y, Cao Y, et al. Swin transformer:Hierarchicalvision transformer using shifted windows[C]. Montreal: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021:1587-1593.
|
[18] |
Ding X, Zhang X, Ma N, et al. Repvgg:Making VGG-styleconvnets great again[C]. Kuala Lumpur: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:933-938.
|
[19] |
徐博文, 卢奕南. 基于改进SOLO网络的城市道路场景实例分割方法[J]. 吉林大学学报(理学版), 2022, 60(6):1356-1362.
|
|
Xu Bowen, Lu Yinan. Urban road scene instance segmentation method based on improved SOLO network[J]. Journal of Jilin University(Science Edition), 2022, 60(6):1356-1362.
|
[20] |
Cordts M, Omran M, Ramos S, et al. The cityscapes dataset for semantic urban scene understanding[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:159-166.
|