电子科技 ›› 2024, Vol. 37 ›› Issue (9): 48-56.doi: 10.16180/j.cnki.issn1007-7820.2024.09.008

• • 上一篇    下一篇

基于Swin-Transformer的颈动脉超声图像斑块分割

何志强, 孙占全   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2023-03-01 出版日期:2024-09-15 发布日期:2024-09-20
  • 作者简介:何志强(1997-),男,硕士研究生。研究方向:医学图像分割。
    孙占全(1977-),男,博士,副教授。研究方向:医学图像处理、人工智能。
  • 基金资助:
    国防基础研究项目(JCKY2019413D001);上海理工大学医工交叉项目(10-21-302-413)

Swin-Transformer-Based Carotid Ultrasound Image Plaque Segmentation

HE Zhiqiang, SUN Zhanquan   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2023-03-01 Online:2024-09-15 Published:2024-09-20
  • Supported by:
    National Defense Basic Research Program(JCKY2019413D001);Medical Engineering Cross Project of USST(10-21-302-413)

摘要:

评估颈动脉超声图像斑块需要大量且经验丰富的临床医生,并且超声图像具有边界模糊、噪声干扰强等特性,使得评估斑块耗时费力,因此需要一种全自动的颈动脉斑块分割方法来解决人力稀缺问题。文中提出了一种基于Swin-Transformer(Shifted-Windows Transformer)模块的深度神经网络模型用于自动分割颈动脉斑块。在U-Net(U-Convolutional Network)架构基础上,编码部分使用3个用于图像下采样的卷积块以获得不同分辨率大小的特征图像,再添加6对连续Swin-Transformer模块用于更细化的特征提取。解码部分将Swin-Transformer模块输出的细化特征逐级上采样,分别与编码部分各级分辨率的特征图进行跳跃连接。基于同仁医院数据集进行对比实验,结果显示所提网络模型Dice指标达到0.814 2,高于其他对比网络,证明了所提模型可以有效地提取颈动脉超声图像斑块特征,实现自动化、高精度的斑块分割。

关键词: 颈动脉斑块, 深度学习, 超声图像, 图像处理, 分割算法, 医学图像, U型架构, Swin-Transformer模块

Abstract:

The evaluation of carotid ultrasound image plaque requires a large number of experienced clinicians, and the ultrasound image has the characteristics of blurred boundary and strong noise interference, making the evaluation of plaques time-consuming and laborious. Therefore, a fully automated carotid plaque segmentation method is urgently needed to solve the problem of manpower scarcity. This study proposes a deep neural network model based on Swin-Transformer (Shifted-Windows Transformer) block for the automatic segmentation of carotid plaques. Based on the U-Net(U-Convolutional Network) architecture, the encoding part uses three convolutional blocks for image down-sampling to obtain feature images of different resolution sizes, and then adds six pairs of two consecutive Swin-Transformer blocks for more refined feature extraction. The decoding part up-samples the refined features output by the Swin-Transformer module step by step, and jump-joints them with the feature maps of each resolution level in the encoding part, respectively. The comparison experiments based on the data set of Tong Ren Hospital show that the Dice index of the proposed deep neural network model reaches 0.814 2, which is higher than that of other comparison networks. The results demonstrate that the proposed model can effectively extract the features of carotid ultrasound image plaques and achieve automated and high-precision plaque segmentation.

Key words: carotid plaque, deep learning, ultrasound image, image processing, segmentation algorithm, medical image, U-shaped architecture, Swin-Transformer block

中图分类号: 

  • TP391.41