电子科技 ›› 2024, Vol. 37 ›› Issue (7): 43-52.doi: 10.16180/j.cnki.issn1007-7820.2024.07.006

• • 上一篇    下一篇

融合片内语义和片间结构特征的自监督CT图像分类方法

曹春萍, 许志华   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2023-02-08 出版日期:2024-07-15 发布日期:2024-07-17
  • 作者简介:曹春萍(1968-),女,副教授。研究方向:数据挖掘、图像处理。
    许志华(1996-),男,硕士研究生。研究方向:医学图像处理、自监督学习。
  • 基金资助:
    浙江省卫生健康委员会面上项目(2022KY122);浙江省中医药科技计划(2019ZA023)

A Self-Supervised CT Image Classification Method Incorporating Intra-Slice Semantic and Inter-Slice Structural Features

CAO Chunping, XU Zhihua   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2023-02-08 Online:2024-07-15 Published:2024-07-17
  • Supported by:
    Zhejiang Health and Wellness Commission Facially Project(2022KY122);Zhejiang TCM Science and Technology Program(2019ZA023)

摘要:

针对CT(Computed Tomography)图像分析存在人工标签稀缺、分类性能不佳等问题,文中提出一种融合片内语义和片间结构特征的自监督CT图像分类方法。该方法利用CT图像的层次结构特性和局部组成要素的语义特点,通过混淆切片生成算法对无标签的病灶部位图像进行处理,生成空间指数和混淆切片作为监督信息。在自监督辅助任务中利用ResNet50网络从混淆切片中同时提取与病灶部位相关的CT片内语义和片间结构特征,将学习到的特征迁移到后续医学分类任务中,使得最终模型从无标签数据中获得增益。实验结果表明,当被使用的有标签数据有限时,相比其他针对CT图像的二维模型和三维模型,所提方法的分类性能和标签利用效率更优。

关键词: 医学图像分类, 三维医学图像处理, CT图像, 自监督学习, 迁移学习, 小样本学习, 片内语义特征, 片间结构特征, ResNet50

Abstract:

In view of the scarcity of artificial labels and poor classification performance in CT(Computed Tomography) image analysis, a self-supervised CT image classification method combining in-slice semantic and interslice structural features is proposed in this study.In this method, the hierarchical structure of CT images and the semantic features of local components are utilized to process the unlabeled lesion images through the confusion section generation algorithm, and the spatial index and confusion section are generated as supervisory information.In the self-supervised auxiliary task, the ResNet50 network was used to extract both the intraslice semantic and interslice structural features related to the lesion site from the confused sections, and the learned features were transferred to the subsequent medical classification task, so that the final model gained from the unlabeled data.The experimental results show that compared with other 2D and 3D models for CT images, the proposed method can achieve better classification performance and label utilization efficiency when the used labeled data is limited.

Key words: medical image classification, 3D medical image processing, CT images, self-supervised learning, transfer learning, few shot learning, intra-slice semantic features, inter-slice structural features, ResNet50

中图分类号: 

  • TP391