[1] |
闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11.
|
|
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11.
|
[2] |
郑光远, 刘峡壁, 韩光辉. 医学影像计算机辅助检测与诊断系统综述[J]. 软件学报, 2018, 29(5):1471-1514.
|
|
Zheng Guangyuan, Liu Xiabi, Han Guanghui. Survey on medical image computer aided detection and diagnosis systems[J]. Journal of Software, 2018, 29(5):1471-1514.
|
[3] |
陶笃纯. 迈向新世纪的医学影像技术[J]. 中国医学影像技术, 2000, 16(1):1-2.
|
|
Tao Duchun. Medical imaging technology in the new century[J]. Chinese Journal of Medical Imaging Technology, 2000, 16(1):1-2.
|
[4] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
|
[5] |
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition[EB/OL].(2015-04-10) [2023-02-15] https://arxiv.org/abs/1409.1556.
|
[6] |
Pan S J, Yang Q. A survey on transfer learning[J]. IE-EE Transactions on Knowledge and Data Engineering, 2009, 22(10):1345-1359.
|
[7] |
Jing L, Tian Y. Selfsupervised visual feature learning with deep neural networks:A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11):4037-4058.
|
[8] |
赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2):349-369.
|
|
Zhao Kailin, Jin Xiaolong, Wang Yuanzhuo. Survey on few-shot learning[J]. Journal of Software, 2021, 32(2):349-369.
|
[9] |
庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1):26-39.
|
|
Zhuang Fuzhen, Luo Ping, He Qing, et al. Suvery on transfer learning research[J]. Journal of Software, 2015, 26(1):26-39.
|
[10] |
He K, Girshick R, Dollár P. Rethinking imagenet pretraining[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:4918-4927.
|
[11] |
Xu J. A review of self-supervised learning methods in the field of medical image analysis[J]. International Journal of Image,Graphics and Signal Processing, 2021, 13(4):33-46.
|
[12] |
Shurrab S, Duwairi R. Self-supervised learning methods and applications in medical imaging analysis:A survey[J]. PeerJ Computer Science, 2022(8):1045-1052.
|
[13] |
Chen L, Bentley P, Mori K, et al. Self-supervised learning for medical image analysis using image context restoration[J]. Medical Image Analysis, 2019, 58(5):101539-101543.
|
[14] |
Flanders A E, Prevedello L M, Shih G, et al. Construction of a machine learning dataset through collaboration:The RSNA 2019 brain CT hemorrhage challenge[J]. Radiology:Artificial Intelligence, 2020, 2(3):190211-190220.
|
[15] |
Jing L, Tian Y. Self-supervised visual feature learning with deep neural networks:A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11):4037-4058.
|
[16] |
彭玉姣. 基于自监督学习的图像特征表示方法研究[D]. 合肥: 安徽大学, 2021:7-15.
|
|
Peng Yujiao. Research on image feature representation based on self-supervised learning[D]. Hefei: Anhui University, 2021:7-15.
|
[17] |
Xie Y, Xu Z, Zhang J, et al. Self-supervised learning of graph neural networks:A unified review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2):2412-2429.
|
[18] |
Bai W, Chen C, Tarroni G, et al. Self-supervised learning for cardiac MR image segmentation by anatomical position prediction[C]. Shenzhen: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019:541-549.
|
[19] |
Henaff O. Data-efficient image recognition with contrastive predictive coding[C]. Online: International Conference on Machine Learning, 2020:4182-4192.
|
[20] |
Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]. Online: International Conference on Machine Learning, 2020:1597-1607.
|
[21] |
He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning[C]. Online: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:9729-9738.
|
[22] |
Grill J B, Strub F, Altché F, et al. Bootstrap your own latent a new approach to self-supervised learning[J]. Advances in Neural Information Processing Systems, 2020, 33(3):21271-21284.
|
[23] |
Chen X, He K. Exploring simple siamese representation learning[C]. Online: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:15750-15758.
|
[24] |
Zbontar J, Jing L, Misra I, et al. Barlow twins:Self-supe-rvised learning via redundancy reduction[C]. Online: International Conference on Machine Learning, 2021:12310-12320.
|
[25] |
Ciga O, Xu T, Martel A L. Self supervised contrastive learning for digital histopathology[J]. Machine Learning with Applications, 2022(7):100198-100206.
|
[26] |
Zhou Z, Sodha V, Rahman Siddiquee M M, et al. Models genesis:Generic autodidactic models for 3D medical image analysis[C]. Shenzhen: Medical Image Computing and Computer Assisted Intervention, 2019:384-393.
|
[27] |
Taleb A, Lippert C, Klein T, et al. Multimodal self-supe-rvised learning for medical image analysis[C]. Online: International Conference on Information Processing in Medical Imaging, 2021:661-673.
|
[28] |
Zheng H, Han J, Wang H, et al. Hierarchical self-supervised learning for medical image segmentation based on multi-domain data aggregation[C]. Strasbourg: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2021:622-632.
|
[29] |
Zhuang X, Li Y, Hu Y, et al. Self-supervised feature learning for 3D medical images by playing a rubik's cube[C]. Shenzhen: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019:420-428.
|
[30] |
Noroozi M, Favaro P. Unsupervised learning of visual representations by solving jigsaw puzzles[C]. Amsterdam: Computer Vision-ECCV the Fourteenth European Conference, 2016:69-84.
|
[31] |
Zhu J, Li Y, Hu Y, et al. Embedding task knowledge into 3D neural networks via self-supervised learning[EB/OL].(2020-06-10)[2023-02015]https://arxiv.org/abs/2006.05798.
|
[32] |
Tang Y, Yang D, Li W, et al. Self-supervised pretraining of swin transformers for 3d medical image analysis[C]. New Orleans: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022:20730-20740.
|
[33] |
Ahmed S, Iftekharuddin K M, Vossough A. Efficacy of texture,shape and intensity feature fusion for posterior-fossa tumor segmentation in MRI[J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(2):206-213.
|
[34] |
谢凯, 孙鸿飞, 林涛, 等. 影像组学中特征提取研究进展[J]. 中国医学影像技术, 2017, 33(12):1792-1796.
|
|
Xie Kai, Sun Hongfei, Lin Tao, et al. Research progresses in feature extraction of radiomics[J]. Chinese Journal Medical Imaging Technology, 2017, 33(12):1792-1796.
|
[35] |
Yu H, Winkler S. Image complexity and spatial information[C]. Klagenfurt: The Fifth International Workshop on Quality of Multimedia Experience, 2013:12-17.
|
[36] |
郭小英, 李文书, 钱宇华, 等. 可计算图像复杂度评价方法综述[J]. 电子学报, 2020, 48(4):819-826.
doi: 10.3969/j.issn.0372-2112.2020.04.024
|
|
Guo Xiaoying, Li Wenshu, Qian Yuhua, et al. Computational evaluation methods of visual complexity perception for images[J]. Acta Electronica Sinica, 2020, 48(4): 819-826.
doi: 10.3969/j.issn.0372-2112.2020.04.024
|
[37] |
周兵, 刘玉霞, 杨欣欣, 等. 图像复杂度研究综述[J]. 计算机科学, 2018, 45(9):30-37.
doi: 10.11896/j.issn.1002-137X.2018.09.004
|
|
Zhou Bing, Liu Yuxia, Yang Xinxin, et al. Review of research on image complexity[J]. Computer Science, 2018, 45(9):30-37.
doi: 10.11896/j.issn.1002-137X.2018.09.004
|
[38] |
Buslaev A, Iglovikov V I, Khvedchenya E, et al. Albumentations:Fast and flexible image augmentations[J]. Information, 2020, 11(2):125-131.
|