电子科技 ›› 2024, Vol. 37 ›› Issue (6): 8-16.doi: 10.16180/j.cnki.issn1007-7820.2024.06.002

• 研究论文 • 上一篇    下一篇

融合感受野增强和注意力机制的交通标志检测算法

叶雨新, 巨志勇, 赖颖   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2023-01-11 出版日期:2024-06-15 发布日期:2024-06-20
  • 作者简介:叶雨新(1999-),男,硕士研究生。研究方向:图像识别、目标检测。
    巨志勇(1975-),男,博士,讲师。研究方向:模式识别、机器视觉、深度学习。
  • 基金资助:
    国家自然科学基金(81101116)

Traffic Sign Detection Algorithm Incorporating Receptive Field Enhancement Module and Attention Mechanism

YE Yuxin, JU Zhiyong, LAI Ying   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2023-01-11 Online:2024-06-15 Published:2024-06-20
  • Supported by:
    National Natural Science Foundation of China(81101116)

摘要:

针对目标检测算法在交通标志检测中存在的不足,文中提出了一种融合感受野增强模块和注意力机制的交通标志检测算法。该算法在YOLOv5(You Only Look Once version 5)算法的基础上改进,选用感受野模块(Receptive Field Block,RFB)替换原骨干网络中的空间金字塔池化(Spatial Pyramid Pooling,SPP)模块,在特征融合网络中嵌入高效通道注意模块(Efficient Channel Attention Module,ECAM)和卷积块注意模块(Convolutional Block Attention Module,CBAM),选用矩阵非极大值抑制(Matrix Non-Maximum Suppression,Matrix NMS)筛选候选框以提升算法的检测精度和检测速度。实验结果表明,在模型参数量与原网络相比未变化的前提下,该算法的均值平均精度达到了82.31%,与原算法相比提升了8.59%,检测速度达到了51.89 frame·s-1,且该算法在各个测试场景中未出现错检漏检现象,证明其泛化能力优于原算法,可以实时检测交通标志。

关键词: 交通标志实时检测, 增强感受野, 注意力机制, 特征融合, 矩阵非极大值抑制, YOLOv5, 深度学习, 实时检测

Abstract:

In view of the number of shortcomings of target detection algorithm in traffic sign detection, this study proposes a traffic sign detection algorithm that incorporating receptive field enhancement module and attention mechanism. The algorithm is improved on basis of YOLOv5(You Only Look Once version 5) algorithm, the RFB (Receptive Field Block) is used to replace the SPP(Spatial Pyramid Pooling) in the original backbone, the attention mechanism modules ECAM(Efficient Channel Attention Module) and CBA (Convolutional Block Attention Module) are embedded in the feature fusion network, and the Matrix NMS (Matrix Non-Maximum Suppression) is used to sift the candidate bounding-boxes. The experimental results show that there is no change in the number of model parameters when compared with the original network, meanwhile, mean average precision of the algorithm reaches 82.31%, which is 8.59% higher than the original network, and the detection speed reaches 51.89 frame·s-1. In addition, there is no false detection or missing detection in each test scenario, which proves that the generalization ability of the algorithm is also better than original algorithm, and the algorithm can perform real-time detection of traffic signs.

Key words: real-time traffic sign detection, enhanc receptive field, attention mechanism, feature fusion, matrix non- maximum suppression, YOLOv5, deep learning, real-time detection

中图分类号: 

  • TP391