[1] |
罗晖, 余俊英, 涂所成. 基于深度学习的公路路面病害检测算法[J]. 科学技术与工程, 2022, 22(13):5299-5305.
|
|
Luo Hui, Yu Junying, Tu Suocheng. Pavement defect detection algorithm based on deep learning[J]. Science Technology andEngineering, 2022, 22(13):5299-5305.
|
[2] |
李良福, 孙瑞赟. 复杂背景下基于图像处理的桥梁裂缝检测算法[J]. 激光与光电子学进展, 2019, 56(6):112-122.
|
|
Li Liangfu, Sun Ruiyun. Bridge crack detection algorithm based on image processing under complex background[J]. Laser and Optoelectronics Progress, 2019, 56(6):112-122.
|
[3] |
王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9):303-312.
doi: 10.3778/j.issn.1002-8331.2112-0242
|
|
Wang Lingmin, Duan Jun, Xin Liwei. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9):303-312.
doi: 10.3778/j.issn.1002-8331.2112-0242
|
[4] |
程长文, 陈玮, 陈劲宏, 等. 改进YOLO的口罩佩戴实时检测方法[J]. 电子科技, 2023, 36(2):73-80.
|
|
Cheng Changwen, Chen Wei, Chen Jinhong, et al. YOLO-improve detection method of real-time mask wearing[J]. Electronic Science and Technology, 2023, 36(2):73-80.
|
[5] |
Suong L K, Jangwoo K. Detection of potholes using a deep convolutional neural network[J]. Journal of Universal Computer Science, 2018, 24(9):1244-1257.
|
[6] |
罗晖, 贾晨, 李健. 基于改进YOLOv4的公路路面病害检测算法[J]. 激光与光电子学进展, 2021, 58(14):336-344.
|
|
Luo Hui, Jia Chen, Li Jian. Road surface disease detection algorithm based on improved YOLOv4[J]. Laser and Optoelectronics Progress, 2021, 58(14):336-344.
|
[7] |
Wang W, Wu B, Yang S, et al. Road damage detection and classification with faster R-CNN[C]. Seattle: IEEE International Conference on Big Data, 2018:5220-5223.
|
[8] |
张宁. 基于Faster R-CNN的公路路面病害检测算法的研究[D]. 南昌: 华东交通大学, 2019:59-63.
|
|
Zhang Ning. Study on detection algorithm for road surface disease based on Faster R-CNN[D]. Nanchang: East China Jiaotong University, 2019:59-63.
|
[9] |
黄璐, 毛晓艳, 杜航, 等. 基于深度学习网络的星表非结构化岩石目标辨识方法研究[J]. 空间控制技术与应用, 2021, 47(6):27-33.
|
|
Huang Lu, Mao Xiaoyan, Du Hang, et al. Onstar catalog unstructured rock target identification method based on deep learning network[J]. Aerospace Control and Application, 2021, 47(6):27-33.
|
[10] |
Zhu X, Lyu S, Wang X, et al. TPH-YOLOv5:Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]. Montreal: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021:2778-2788.
|
[11] |
Nepal U, Eslamiat H. Comparing YOLOv3,YOLOv4 and YOLOv5 for autonomous landing spot detection in faulty UAVs[J]. Sensors, 2022, 22(2):464-478.
|
[12] |
许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8):10-25.
doi: 10.3778/j.issn.1002-8331.2012-0449
|
|
Xu Degang, Wang Lu, Li Fan. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8):10-25.
doi: 10.3778/j.issn.1002-8331.2012-0449
|
[13] |
Jia W, Xu S, Liang Z, et al. Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector[J]. IET Image Processing, 2021, 15(14):3623-3637.
|
[14] |
Li Z Z. Road aerial object detection based on improved YOLOv5[C]. Beihai: International Conference on Computer, Big Data and Artificial Intelligence, 2022: 1-5.
|
[15] |
冯凯, 张书雅, 李锦暄, 等. 基于卷积神经网络的返回舱识别[J]. 现代信息科技, 2021, 5(10):20-26.
|
|
Feng Kai, Zhang Shuya, Li Jinxuan, et al. Identification ofreturn cabin based on convolutional neural network[J]. Modern Information Technology, 2021, 5(10):20-26.
|
[16] |
张伟, 刘娜, 江洋, 等. 基于YOLO神经网络的垃圾检测与分类[J]. 电子科技, 2022, 35(10):45-50.
|
|
Zhang Wei, Liu Na, Jiang Yang, et al. Garbage detection and classification based on YOLO neural network[J]. Electronic Science and Technology, 2022, 35(10):45-50.
|
[17] |
Woo S, Park J, Lee J Y, et al. Cbam:Convolutional block attention module[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:3-19.
|
[18] |
Zhang Y F, Ren W, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 50(6):146-157.
|
[19] |
马志强. 基于改进YOLOv5的海珍品目标检测算法[J]. 现代信息科技, 2021, 5(18):80-85.
|
|
Ma Zhiqiang. Sea treasure target detection algorithm based on improved YOLOv5[J]. Modern Information Technology, 2021, 5(18):80-85.
|
[20] |
Park S S, Tran V T, Lee D E. Application of various yolo models for computer vision-based real-time pothole detection[J]. Applied Sciences, 2021, 11(23):11217-11229.
|
[21] |
Bučko B, Lieskovská E, Zábovská K, et al. Computer vision based pothole detection under challenging conditions[J]. Sensors, 2022, 22(22):8871-8878.
|
[22] |
Heo D H, Choi J Y, Kim S B, et al. Image-based pothole detection using multiscale feature network and risk assessment[J]. Electronics, 2023, 12(4):810-826.
|