电子科技 ›› 2024, Vol. 37 ›› Issue (7): 53-59.doi: 10.16180/j.cnki.issn1007-7820.2024.07.007

• • 上一篇    下一篇

基于改进YOLOv5的路面坑洼检测方法

何幸, 黄永明, 朱勇   

  1. 东南大学 自动化学院,江苏 南京 210018
  • 收稿日期:2023-02-14 出版日期:2024-07-15 发布日期:2024-07-17
  • 作者简介:何幸(1994-),男,硕士研究生。研究方向:智能交通、立体视觉。
    黄永明(1982-),男,博士,副教授。研究方向:云平台、嵌入式系统。
    朱勇(1998-),男,硕士研究生。研究方向:车路协同。
  • 基金资助:
    江苏省重点研发计划(BE2020116)

Pavement Pothole Detection Method Based on Improved YOLOv5

HE Xing, HUANG Yongming, ZHU Yong   

  1. School of Automation,Southeast University,Nanjing 210018,China
  • Received:2023-02-14 Online:2024-07-15 Published:2024-07-17
  • Supported by:
    Jiangsu Provincial Key R&D Programme(BE2020116)

摘要:

坑洼是一种常见的路面病害,会降低行车安全,准确快速地检测路面坑洼较为重要。针对现有坑洼检测方法在小目标和密集目标的场景下检测精度不高的问题,文中提出了一种改进YOLOv5(You Only Look Once version 5)模型。在YOLOv5的主干网络中引入CBAM(Convolutional Block Attention Module)来提高模型对关键特征的注意能力,将YOLOv5的损失函数改为EIoU(Efficient Intersection over Union)来提高模型对目标的检测精度。实验结果表明,所提模型能够在小目标和密集目标的场景下快速准确地检测路面坑洼,在开源数据集Annotated Potholes Image Dataset中的mAP(mean Average Precision)达到了82%,较较于YOLOv5和其他主流方法也有所提高。

关键词: 路面坑洼, 深度学习, YOLOv5, 注意力机制, CBAM注意力, 小目标检测, 密集目标检测, 损失函数

Abstract:

Pothole is a common road disease, it reduce driving safety, accurate and rapid detection of potholes is more important.In viewof the problem that the detection accuracy of existing pothole detection methods is not high in the scenario of small targets and dense targets, an improved YOLOv5(You Only Look Once version 5) model is proposed in this study.TheCBAM(Convolutional Block Attention Module) is introduced into YOLOv5's backbone network to improve the model's ability to pay attention to key features. The loss function of YOLOv5 is changed to EIoU(Efficient Intersection over Union) to improve the detection accuracy of the model.The experimental results show that the proposed model can detect Potholes quickly and accurately in the scenarios of small targets and dense targets, and the mAP(mean Average Precision) in the open source Annotated Potholes Image Dataset reaches 82%. Compared with YOLOv5 and other mainstream methods, it is also improved.

Key words: pavement potholes, deep learning, YOLOv5, attention mechanism, CBAM attention, small target detection, dense target detection, loss function

中图分类号: 

  • TP391