电子科技 ›› 2024, Vol. 37 ›› Issue (10): 48-54.doi: 10.16180/j.cnki.issn1007-7820.2024.10.007

• • 上一篇    下一篇

基于字符增强的工业设备故障命名实体识别

张阳, 刘瑾   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2023-03-02 出版日期:2024-10-15 发布日期:2024-11-04
  • 作者简介:张阳(1996-),男,硕士研究生。研究方向:自然语言处理。
    刘瑾(1978-),女,博士,教授。研究方向:人工智能。
  • 基金资助:
    国家自然科学基金(U1831133);上海市科委科技创新行动计划(22S31903700);上海市科委科技创新行动计划(21S31904200)

Character Enhancement Based on Named Entity Recognition for Industrial Equipment Faults

ZHANG Yang, LIU Jin   

  1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science,Shanghai 201600, China
  • Received:2023-03-02 Online:2024-10-15 Published:2024-11-04
  • Supported by:
    National Natural Science Foundation of China(U1831133);Shanghai Science and Technology Commission Science and Technology Innovation Action Plan(22S31903700);Shanghai Science and Technology Commission Science and Technology Innovation Action Plan(21S31904200)

摘要:

针对工业设备故障领域训练数据少、实体结构复杂和实体分布不均匀等问题,文中构建了工业设备故障命名实体识别语料库。为解决字符级命名实体识别模型难以表示工业设备故障领域的专业词汇信息问题,文中提出一种基于字符增强的工业设备故障命名实体识别模型。在嵌入层,直接在RoBERTa-WWM(Robustly Optimized BERT Pretraining Approach with Whole Word Masking)的Transformer层之间融入专业词汇信息,将单词信息分配给其包含的每个字来达到增强语义的目的,通过BiLSTM(Bidirectional Long Short-Term Memory)获得全局语义信息,利用CRF(Conditional Random Field)学习相邻标签之间的依赖关系,以获得最佳句子级标签序列。实验结果证明,所提模型对工业设备故障命名实体识别任务具有良好的效果,平均F1值达到了92.403%。

关键词: 工业设备故障, 语料库, 命名实体识别, RoBERTa-WWM, 专业词向量, BiLSTM, CRF, 深度学习

Abstract:

To address the issues of sparse training data, complex entity structures, and uneven entity distribution in the industrial equipment failure domain, this study constructs an industrial equipment failure named entity recognition corpus. Due to the difficulty of character-level named entity recognition models in representing the professional vocabulary information in the field of industrial equipment failure, this study proposes a character-enhanced industrial equipment failure named entity recognition model to address this problem. In the embedding layer, professional vocabulary information is directly fused between the Transformer layers of RoBERTa-WWM (Robustly Optimized BERT Pretraining Approach with Whole Word Masking) to allocate word information to each of its constituent characters for enhanced semantics. The global semantic information is obtained through a BiLSTM(Bidirectional Long Short-Term Memory), and the CRF(Conditional Random Field) is used to learn the dependency relationship between adjacent labels to obtain the optimal sentence-level label sequence. Experimental results demonstrate that the proposed model has good performance on industrial equipment fault named entity recognition tasks, with an average F1 score of 92.403%.

Key words: industrial equipment failure, corpus, named entity recognition, RoBERTa-WWM, professional word embedding, BiLSTM, CRF, deep learning

中图分类号: 

  • TP183