[1] |
刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 4(4):622-635.
|
|
Liu Li, Kuang Gangyao. Overview of image texture feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4):622-635.
|
[2] |
徐晓光, 李海. 多尺度特征在YOLO算法中的应用研究[J]. 电子测量与仪器学报, 2021, 35(6):96-101.
|
|
Xu Xiaoguang, Li Hai. Application research of multi-scale features in YOLO algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(6):96-101.
|
[3] |
马德锋, 李培军. 加入多尺度图像纹理的岩性分类[J]. 岩石学报, 2008, 24(6):1425-1430.
|
|
Ma Defeng, Li Peijun. The use of multiscale texture in image classification for lithologic mapping[J]. Acta Petrologica Sinica, 2008, 24(6):1425-1430.
|
[4] |
许夙晖, 慕晓冬, 赵鹏, 等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报, 2016, 45(7):834-840.
doi: 10.11947/j.AGCS.2016.20150623
|
|
Xu Suhui, Mu Xiaodong, Zhao Peng, et al. Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):834-840.
doi: 10.11947/j.AGCS.2016.20150623
|
[5] |
杨州, 慕晓冬, 王舒洋, 等. 基于多尺度特征融合的遥感图像场景分类[J]. 光学精密工程, 2018, 26(12):3099-3107.
doi: 10.3788/OPE.
|
|
Yang Zhou, Mu Xiaodong, Wang Shuyang, et al. Scene classification of remote sensing images based on multiscale features fusion[J]. Optics and Precision Engineering, 2018, 26(12):3099-3107.
doi: 10.3788/OPE.
|
[6] |
陈科峻, 张叶. 循环神经网络多标签航空图像分类[J]. 光学精密工程, 2020, 28(6):1404-1413.
doi: 10.3788/OPE.
|
|
Chen Kejun, Zhang Ye. Recurrent neural network multilabel aerial images classification[J]. Optics and Precision Engineering, 2020, 28(6):1404-1413.
doi: 10.3788/OPE.
|
[7] |
李博, 曹鹏, 栗伟, 等. 基于尺度空间中多特征融合的医学影像分类[J]. 计算机应用, 2013, 33(4):1108-1111,1114.
doi: 10.3724/SP.J.1087.2013.01108
|
|
Li Bo, Cao Peng, Li Wei, et al. Medical image classific-ation based on scale space multi-feature fusion[J]. Journal of Computer Applications, 2013, 33(4):1108-1111,1114.
doi: 10.3724/SP.J.1087.2013.01108
|
[8] |
侯毅, 周石琳, 雷琳, 等. 基于Gabor滤波器组的多特征尺度不变特征提取方法[J]. 电子学报, 2013, 41(6):1146-1152.
doi: 10.3969/j.issn.0372-2112.2013.06.016
|
|
Hou Yi, Zhou Shilin, Lei Lin, et al. Invariant feature with multi-characteristic scales using Gabor filter bank[J]. Acta Electronica Sinica, 2013, 41(6):1146-1152.
doi: 10.3969/j.issn.0372-2112.2013.06.016
|
[9] |
陈静, 张艳新, 姜媛媛. 融合多特征与随机森林的纹理图像分类方法[J]. 传感器与微系统, 2019, 38(12):58-61.
|
|
Chen Jing, Zhang Yanxin, Jiang Yuanyuan. Texture image classification method fuses multi-feature and random forest[J]. Transducer and Microsystem Technologies, 2019, 38(12):58-61.
|
[10] |
周德龙, 张捷, 朱思聪. 多方向多尺度Gabor特征表示及其匹配算法[J]. 电子学报, 2019, 47(9):1998-2002.
doi: 10.3969/j.issn.0372-2112.2019.09.026
|
|
Zhou Delong, Zhang Jie, Zhu Sicong. Multi-directional and multi-scale Gabor feature representation and its matching algorithm[J]. Acta Electronica Sinica, 2019, 47(9):1998-2002.
doi: 10.3969/j.issn.0372-2112.2019.09.026
|
[11] |
刘晓虹, 朱玉全, 刘哲, 等. 基于改进多尺度LBP算法的肝脏CT图像特征提取方法[J]. 计算机科学, 2019, 46(3):125-130.
|
|
Liu Xiaohong, Zhu Yuquan, Liu Zhe, et al. Liver CT image feature extraction method based on improved multiscale LBP algorithm[J]. Computer Science, 2019, 46(3):125-130.
|
[12] |
Angermueller C, Pärnamaa T, Parts L, et al. Deep learning for computational biology[J]. Molecular Systems Biology, 2016, 12(7):878-880.
doi: 10.15252/msb.20156651
pmid: 27474269
|
[13] |
肖飞扬, 顾幸生. 基于并行LSTM-CNN的化工过程故障检测[J]. 华东理工大学学报(自然科学版), 2023, 49(3):382-390.
|
|
Xiao Feiyang, Gu Xingsheng. Fault detection of chemical process based on parallel LSTM-CNN[J]. Journal of East China University of Science and Technology, 2023, 49(3):382-390.
|
[14] |
Alzubaidi L, Zhang J, Humaidi A J, et al. Review of deep learning:Concepts,CNN architectures,challenges,applications,future directions[J]. Journal of Big Data, 2021, 8(1):1-74.
doi: 10.1186/s40537-020-00387-6
|
[15] |
景雨, 祁瑞华, 刘建鑫, 等. 基于改进多尺度深度卷积网络的手势识别算法[J]. 计算机科学, 2020, 47(6):180-183.
doi: 10.11896/jsjkx.200200030
|
|
Jing Yu, Qi Ruihua, Liu Jianxin, et al. Gesture recognition algorithm based on improved multiscale deep convolutional neural network[J]. Computer Science, 2020, 47(6):180-183.
doi: 10.11896/jsjkx.200200030
|
[16] |
Kattenborn T, Leitloff J, Schiefer F, et al. Review on convolutional neural networks in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 17(3):24-49.
|
[17] |
Ju C, Bibaut A, Van D L M. The relative performance of ensemble methods with deep convolutional neural networks for image classification[J]. Journal of Applied Statistics, 2018, 45(15):2800-2818.
doi: 10.1080/02664763.2018.1441383
pmid: 31631918
|
[18] |
Chen J L, Wang Y L, Wu Y J, et al. An ensemble of convolutional neural networks for image classification based on LSTM[C]. Fuzhou: International Conference on Green Informatics, 2017:892-901.
|
[19] |
Gill H S, Khehra B S. An integrated approach using CNN-RNN-LSTM for classification of fruit images[J]. Materials Today, 2022, 51(3):591-595.
|
[20] |
袁非牛, 夏雪, 李钢, 等. 面向烟雾识别与纹理分类的Gabor网络[J]. 中国图象图形学报, 2019, 24(2):269-281.
|
|
Yuan Feiniu, Xia Xue, Li Gang, et al. Gabor net for smoke recognition and texture classification[J]. Journal of Image and Graphics, 2019, 24(2):269-281.
|
[21] |
Hen Y W, Khalid M, Yusof R. Face verification with Gabor representation and support vector machines[C]. Phyket: The First Asia International Conference on Modelling & Simulation, 2007:521-528.
|
[22] |
陈小佳, 崔太雷, 杨科. 基于特征融合和集成学习的隧道内车辆视频识别方法[J]. 武汉大学学报(工学版) 2016, 49(1):148-153.
|
|
Chen Xiaojia, Cui Tailei, Yang Ke. A video vehicle recognition method based on feature fusion and ensemble learning[J]. Engineering Journal of Wuhan University, 2016, 49(1):148-153.
|
[23] |
Biswas R, Nath A, Roy S. Mammogram classification using graylevel cooccurrence matrix for diagnosis of breast cancer[C]. Ghaziabad: International Conference on Micro-Electronics and Telecommunication Engineering, 2016:1103-1108.
|
[24] |
Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Transactions on Systems,Man and Cybernetics, 1973(6):610-621.
|
[25] |
Fu Y, Yang G, Song X, et al. Improved estimation of winter wheat aboveground biomass using multiscale textures extracted from UAV-based digital images and hyperspectral feature analysis[J]. Remote Sensing, 2021, 13(4):581-602.
doi: 10.3390/rs13040581
|
[26] |
范志鹏, 李军, 刘宇强, 等. 基于灰度纹理指纹的恶意代码分类[J]. 科学技术与工程, 2020, 20(29):12014-12020.
|
|
Fan Zhipeng, Li Jun, Liu Yuqiang, et al. Classification of malware based on gray texture fingerprint[J]. Science Technology and Engineering, 2020, 20(29):12014-12020.
|
[27] |
Wang P, Chen P, Yuan Y, et al. Understanding convolute-on for semantic segmentation[C]. Lake Tahoe: IEEE W-inter Conference on Applications of Computer Vision, 2018:632-638.
|
[28] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[29] |
Song K, Hu S, Yan Y. Automatic recognition of surface defects on hot-rolled steel strip using scattering convolution network[J]. Journal of Computational Information Systems, 2014, 10(7):3049-3055.
|
[30] |
薄华, 马缚龙, 焦李成. 图像纹理的灰度共生矩阵计算问题的分析[J]. 电子学报, 2006(1):155-158,134.
|
|
Bo Hua, Ma Fulong, Jiao Licheng. Research on comput-ation of GLCM of image texture[J]. Acta Electronica Sinica, 2006(1):155-158,134.
|