电子科技 ›› 2024, Vol. 37 ›› Issue (6): 77-83.doi: 10.16180/j.cnki.issn1007-7820.2024.06.010

• 研究论文 • 上一篇    下一篇

一种基于多阈值模板的快速分类在线检测方法

薛宇鑫, 齐金鹏, 贾灿, 袁傲, 黄莉娜   

  1. 东华大学 信息科学与技术学院,上海 201620
  • 收稿日期:2023-01-15 出版日期:2024-06-15 发布日期:2024-06-20
  • 作者简介:薛宇鑫(1994-),男,硕士研究生。研究方向:大数据异常检测。
    齐金鹏(1977-),男,博士,副教授。研究方向:大数据异常检测、图像处理。
  • 基金资助:
    国家自然科学基金(61305081);国家自然科学基金(61104154);上海市自然科学基金(16ZR1401300);上海市自然科学基金(16ZR1401200)

A Fast Classification Online Detection Method Based on Multi-Threshold Template

XUE Yuxin, QI Jinpeng, JIA Can, YUAN Ao, HUANG Lina   

  1. College of Information Science & Technology,Donghua University,Shanghai 201620,China
  • Received:2023-01-15 Online:2024-06-15 Published:2024-06-20
  • Supported by:
    National Natural Science Foundation of China(61305081);National Natural Science Foundation of China(61104154);Shanghai Natural Science Foundation of China(16ZR1401300);Shanghai Natural Science Foundation of China(16ZR1401200)

摘要:

传统离线数据分析方法对于处理即时性高和流量大的数据存在缺陷,而在线检测模型可以满足数据流分析的实时性要求。文中提出了一种基于多阈值模板的在线检测方法。该方法结合多路搜索树突变点检测(Ternary Search Tree and Kolmogorov-Smirnov,TSTKS)算法进行在线检测,基于突变点密度更新窗口长度从而提高了突变点检测精度。采用等量分级策略实现对时序数据的自学习、匹配和分类,进而对大规模病变数据进行状态检测和预测。仿真实验和病变数据的实验结果表明,所提方法具有效果高、分类准确等优点,为大规模时序数据进行快速分类研究提供了新方法。

关键词: 时序数据, TSTKS算法, 滑动窗口, 在线检测理论, 缓冲区, 突变点密度, 多阈值模板, 等量分级策略

Abstract:

The traditional off-line data analysis method has many shortcomings in processing the data with high immediacy and large flow, while the online detection model can meet the real-time requirements of data flow analysis. This study proposes an online detection method based on the multi-threshold template. The proposed method combines TSTKS(Ternary Search Tree and Kolmogorov-Smirnov) algorithm for online detection, and updates the window length based on the mutation point density to improve the mutation point detection accuracy. Self-learning, matching and classification of time series data are realized by equal grading strategy, so as to detect and predict the status of large-scale lesion data. The experimental results of simulation experiment and lesion data show that the proposed method has the advantages of high efficiency and accurate classification, which provides a new method for the rapid classification of large-scale time series data.

Key words: time series data, TSTKS algorithm, sliding window, online detection theory, buffer, mutation point density, multi-threshold template, equal grading police

中图分类号: 

  • TP311