[1] |
刘晓艳, 王珏, 姚铁锤, 等. 基于时序数据处理的分布式光伏功率预测系统[J]. 数据与计算发展前沿, 2021, 3(4):140-148.
|
|
Liu Xiaoyan, Wang Jue, Yao Tiechui, et al. A distributed photovoltaic power prediction system based on time series data processing[J]. Frontiers of Data and Computing, 2021, 3(4):140-148.
|
[2] |
张长青, 杨楠. 基于车联网大数据分析的实时路况检测系统[J]. 电子科技, 2019, 32(8):66-69,74.
|
|
Zhang Changqing, Yang Nan. Design of real-time road condition detection system based on big data analysisof vehicle network[J]. Electronic Science and Technology, 2019, 32(8):66-69,74.
|
[3] |
艾辣椒. 基于多路搜索的时序突变异常快速分析[D]. 上海: 东华大学,2018:66-69.
|
|
Ai Lajiao. A fast analysis for abrupt change detection on time series based on multipath search[D]. Shanghai: Donghua University,2018:66-69.
|
[4] |
胡宇鹏. 时间序列数据挖掘中的特征表示与分类方法的研究[D]. 济南: 山东大学,2018:83-88.
|
|
Hu Yupeng. Research on feature representation and classification methods in time series data mining[D]. Jinan: Shandong University,2018:83-88.
|
[5] |
Casson A, Yates D, Smith S, et al. Wearable electroence-phalography[J]. Engineering in Medicine and Biology Magazine IEEE, 2010, 29(3):44-56.
|
[6] |
Aljawarneh S, Anguera A, Atwood J W, et al. Particulari-ties of data mining in medicine:Lessons learned from patient medical time series data analysis[J]. Journal on Wireless Communications and Networking, 2019(1):1-29.
|
[7] |
朱俊俊. 基于自适应随机策略的多突变点在线检测与病变数据关联分析[D]. 上海: 东华大学,2022:90-94.
|
|
Zhu Junjun. Online detection of multiple change points and association analysis of pathological data based on adaptive random strategy[D]. Shanghai: Donghua University,2022:90-94.
|
[8] |
邹俊晨. 一种基于自适应滑动窗口的突变点在线检测方法[D]. 上海: 东华大学,2019:69-73.
|
|
Zou Junchen. An online change point detection method based on adaptive sliding window[D]. Shanghai: Donghua University,2019:69-73.
|
[9] |
孔凡书, 齐金鹏, 龚汉鑫, 等. 一种基于波动向量分级技术的病变数据快速分析方法[J]. 电子科技, 2022, 35(7):1-6.
|
|
Kong Fanshu, Qi Jinpeng, Gong Hanxin, et al. A fast analysis method of pathological data based on wave vector grading technology[J]. Electronic Science and Technology, 2022, 35(7):1-6.
|
[10] |
龚汉鑫, 齐金鹏, 孔凡书, 等. 一种基于模板匹配与隶属度解析的时序异常快速检测方法[J]. 电子科技, 2022, 35(6):1-5,27.
|
|
Gong Hanxin, Qi Jinpeng, Kong Fanshu, et al. A fast time series anomaly detection method based on template matching and membership analysis[J]. Electronic Science and Technology, 2022, 35(6):1-5,27.
|
[11] |
孔凡书. 基于多突变点检测的波动向量分级技术研究与应用[D]. 上海: 东华大学,2021:53-60.
|
|
Kong Fanshu. Research and application of a wave vector classification technique based on multiple change points detection[D]. Shanghai: Donghua University,2021:53-60.
|
[12] |
Boukerche A, Zhang L, Alfandi O. Outlier detection:Methods,models,and classification[J]. ACM Computing Surveys, 2020, 53(3):1-37.
|
[13] |
Bolgov M V. Bayesian estimation of the change point in the sequences of correlated random variables of hydrometeorological characteristic[J]. Russian Meteorology and Hydrology, 2021, 46(10):667-673.
|
[14] |
展鹏. 基于时间序列挖掘的异常检测关键技术研究[D]. 济南: 山东大学,2020:88-94.
|
|
Zhan Peng. Research on key technologies of anomaly detection based on time series mining[D]. Jinan: Shandong University,2020:88-94.
|
[15] |
张友浩, 赵鸣, 徐梦瑶. 时序数据挖掘的预处理研究综述[J]. 智能计算机与应用, 2021, 11(1):74-78.
|
|
Zhang Youhao, Zhao Ming, Xu Mengyao, et al. Summary of research on preprocessing of time series data mining[J]. Intelligent Computer and Applications, 2021, 11(1):74-78.
|
[16] |
Qi J P, Zhang Q, Qi J, et al. Multi-channel detection for abrupt change based on the ternary search tree and kolmogorov statistic method[C]. Hangzhou: The Thirty- fourth Chinese Control Conference,2015:4968-4973.
|
[17] |
Pearson R K. Outliers in process modeling and identification[J]. IEEE Transactions on Control Systems Technology, 2002, 10(1):55-63.
|
[18] |
邬贺铨. 大数据时代的发展趋势[J]. 广东科技, 2016, 25(17):30-33.
|
|
Wu Hequan. Development trend in the era of big data[J]. Guangdong Science and Technology, 2016, 25(17):30-33.
|
[19] |
Alarcon-aquino V, Barria J A. Anomaly detection in communication networks using wavelets[J]. IEEE Proceedings Communications, 2002, 148(6):55-62.
|
[20] |
贾凡, 严妍, 张家琪. 基于K-means聚类特征消减的网络异常检测[J]. 清华大学学报(自然科学版), 2018, 58(2):137-142.
|
|
Jia Fan, Yan Yan, Zhang Jiaqi. K-means based feature reduction for network anomaly detection[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2):137-142.
|