›› 2013, Vol. 26 ›› Issue (8): 135-.

• 论文 • 上一篇    下一篇

基于BitBP特征的多重级联人脸检测器

杨秀坤,张尚迪   

  1. (哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001)
  • 出版日期:2013-08-15 发布日期:2013-09-25
  • 作者简介:杨秀坤(1971—),女,教授。研究方向:模式识别,图像处理,计算机视觉。E-mail:xiukunyang@hotmail.com

Face Detection Based on BitBP and Multi-cascade

YANG Xiukun,ZHANG Shangdi   

  1. (College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
  • Online:2013-08-15 Published:2013-09-25

摘要:

结合Haar和MB-LBP特征,提出了一种采用BitBP特征描述图像局部信息的方法,该特征可有效描述图像局部区域的灰度像素分布情况,具有比Haar和MB-LBP特征更强的分类能力。且可有效地克服Haar特征数目巨大、训练时间长的缺点。根据BitBP特性,提出一种多重级联的分类器。该分类器的每层均由单一BitBP特征的次级级联分类器构成。而次级级联分类器中的每层分类器均是一个小型的联分类器。利用多重级联结构,可获得更快的检测速度。

关键词: Adaboost, BitBP特征, 多重级联, 人脸检测

Abstract:

This paper proposes a distinctive feature extraction method using Bit Binary Pattern (hereafter referred to as BitBP) to represent facial image for frontal face detection.The BitBP feature encodes the integral image of rectangular regions by binary pattern operator.An effective face classifier is trained with the RealAdaboost algorithm and LUT weak classifier for front face detection.Experiments results demonstrate that the new BitBP feature is more distinctive than Haar-like feature and MB-LBP feature.Given a false positive rate of 0.1%,the classifier based on BitBP features shows 2% higher correct detection rate than the Haar-like feature and 0.14% higher correct detection rate than the MB-LBP feature.The training time is also efficiently reduced since the BitBP feature has a much smaller size.A cascade of classifiers which are already cascaded is constructed into the final classifier,and all the classifiers are based on BitBP features.

Key words: Adaboost;BitBP feature;multi-cascade;face detection

中图分类号: 

  • TP391.41