›› 2016, Vol. 29 ›› Issue (5): 105-.

• 论文 • 上一篇    下一篇

基于改进布谷鸟搜索算法的图像分割

李瑞芳   

  1. (西安电子科技大学 数学与统计学院,陕西 西安 710126)
  • 出版日期:2016-05-15 发布日期:2016-05-24
  • 作者简介:李瑞芳(1990—),女,硕士研究生。研究方向:多尺度分析理论及其在图像处理中的应用。

An Image Segmentation Algorithm Based on Modified Cuckoo Search

LI Ruifang   

  1. (School of Mathematics and Statistics,Xidian University,Xi'an 710126,China)
  • Online:2016-05-15 Published:2016-05-24

摘要:

针对布谷鸟搜索算法在应用其进行图像分割时计算量大、易陷入局部极小值解、收敛速度慢的问题。文中采用一种基于改进布谷鸟搜索算法的多阈值图像分割算法。该算法以Ostu算法设计自适应度函数,将布谷鸟搜索算法和K均值算法融合,增加种群的多样性,且能自适应地确定阈值个数及其范围,并找到待分割图像的最优阈值。实验结果表明,与K均值算法和布谷鸟搜索算法相比,该算法找到的阈值质量更佳,图像分割结果更好。

关键词: 图像分割, 阈值分割, K均值

Abstract:

The cuckoo search algorithm (CS) is a bionic algorithm,but its application to image segmentation suffers from such drawbacks as large amount of calculation,appearing local minimum and slow convergence.In order to solve these problems,we propose a multi-threshold image segmentation algorithm based on modified cuckoo search algorithm.This algorithm employs the Otsu method as the fitness function,combines the cuckoo search algorithm with the K-means algorithm for better diversity of population,and adaptively determines the number and range of the thresholds to find the optimal thresholds of the image to be segmented.Experimental results show that the MCS algorithm outperforms the K-means and the cuckoo search (CS) in terms of segmentation thresholds and segmentation effect.

Key words: image segmentation;threshold segmentation;K means

中图分类号: 

  • TP391.41