电子科技 ›› 2020, Vol. 33 ›› Issue (5): 58-65.doi: 10.16180/j.cnki.issn1007-7820.2020.05.010

• • 上一篇    下一篇

CHMM和AR模型在轴承性能退化评估与预测中的应用

刘义民,刘韬,陈庆   

  1. 昆明理工大学 机电工程学院,云南 昆明 650500
  • 收稿日期:2019-03-21 出版日期:2020-05-15 发布日期:2020-06-02
  • 作者简介:刘义民(1995-),男,硕士研究生。研究方向:设备性能评估和寿命预测。|刘韬(1980-),男,博士,副教授。研究方向:现代信号处理理论与方法、故障特征提取中的应用、基于机器学习方法的智能诊断、设备性能评估和寿命预测。
  • 基金资助:
    国家自然科学基金(51675251);云南省应用基础研究计划项目重点项目(201601PE00008)

Application of CHMM and AR Model in Evaluation and Prediction of Bearing Performance Degradation

LIU Yimin,LIU Tao,CHEN Qing   

  1. School of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650000,China
  • Received:2019-03-21 Online:2020-05-15 Published:2020-06-02
  • Supported by:
    National Natural Science Foundation of China(51675251);Applied Basic Research Key Project of Yunnan(201601PE00008)

摘要:

经典的故障诊断技术可对系统运行状态进行实时评估,但在实际应用中更希望预知故障的发生以便对人身、经济安全做出保障。轴承作为机械设备的关键部件,其损坏会造成严重的工程事故,因此需对轴承进行故障诊断。文中引入连续隐马尔可夫模型以对数似然数作为评估指标来评估性能退化,即利用基于模型输出的对数似然率结合自回归模型对轴承进行性能退化预测。为了更好地验证方法有效性,文中使用了两组全寿命数据互为对比。结果显示,使用基于连续隐马尔可夫模型的轴承性能退化评估法对轴承性能的退化进行评估效果良好,自回归模型在寿命预测上得到了较为精准的结果。

关键词: 连续隐马尔可夫模型, 自回归, 趋势外推, 性能退化评估, 性能退化预测, 特征提取

Abstract:

The classic fault diagnosis technology can evaluate the operating status of the system in real time, but in practical applications, it is more desirable to predict the occurrence of the fault to guarantee personal and economic security. As a key component of mechanical equipment, the damage of the bearing may cause serious engineering accidents, so the bearing needs to be diagnosed. In this study, a continuous hidden Markov model was introduced, and the log likelihood was used as an evaluation index to evaluate performance degradation. The logarithm likelihood ratio based on the model output was combined with the autoregressive model, and then was used to predict the performance degradation of the bearing. The validity of the method was verified by comparing the two sets of full-life data. The results showed that the bearing performance degradation evaluation method based on continuous hidden Markov model was effective in evaluating the degradation of bearing performance, and the autoregressive model obtained more accurate results in life prediction.

Key words: continuous hidden Markov model, autoregressive, trend extrapolation, performance degradation assessment, performance degradation prediction, feature extraction

中图分类号: 

  • TP206 +.3