电子科技 ›› 2020, Vol. 33 ›› Issue (11): 24-30.doi: 10.16180/j.cnki.issn1007-7820.2020.11.005

• • 上一篇    下一篇

多算法融合的眼底图像渗出液分割

杨振宇,傅迎华,付东翔,王雅静   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2019-08-30 出版日期:2020-11-15 发布日期:2020-11-27
  • 作者简介:杨振宇(1995-),男,硕士研究生。研究方向:图像处理、计算机视觉和深度学习等。|傅迎华(1976-),女,博士,讲师。研究方向:数字图像处理、数据挖掘、算法分析、模式识别和人工智能等。|付东翔(1971-),男,博士,副教授。研究方向:人工智能、工业自动化等。
  • 基金资助:
    国家自然科学基金(61703277)

HEs Segmentation of Fundus Images by Multi-algorithm Fusion

YANG Zhenyu,FU Yinghua,FU Dongxiang,WANG Yajing   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2019-08-30 Online:2020-11-15 Published:2020-11-27
  • Supported by:
    National Natural Science Foundation of China(61703277)

摘要:

利用眼底图像中渗出液的亮度与边缘特征,文中采用一种多算法融合的渗出液自动检测分割方法来解决目前传统算法灵敏度低以及检测中存在视盘和其它微血管瘤等暗病灶的干扰等问题。为了提高分割效率和准确率,文中对原始图像进行顶帽底帽变换来增强图像对比度,采用GA与KSW熵法相结合的双阈值分割法对眼底图像进行渗出液分割。实验在Kaggle数据库上进行测试,结果显示该算法在像素层统计的SE和阳性预测值PPV分别为83.6%和93.2%,在图像层统计的SE、SP与AC分别为95.2%、86.2%和90.8%。在另一个独立的DIARETDB1数据库上进行测试,获得的结果分别为82.4%、93.3%、93.6%、96.2%和89.9%。与其它算法对比,文中方法可以很好地区分开渗出液与暗病灶,且检测时间短,具有准确性和高效性。

关键词: 糖尿病视网膜病变, 眼底图像, 遗传算法, KSW熵, 图像分割, 渗出液

Abstract:

Based on the luminance and edge characteristics of the exudates in fundus images, a multi-algorithm fusion method for automatic detection of the exudate is adopted in this paper to solve the problems of low sensitivity of the traditional algorithm and interference of dark lesions such as optic disc and other microangiomas in the detection results. In order to improve the segmentation efficiency and accuracy, this study uses top-hat and boottom-hat to enhance the image contrast of the original image, and then a dual threshold segmentation method combining genetic algorithm and optimal histogram entropy method is proposed to preliminarily segment the image. The experimental results show that the sensitivity and PPV of the algorithm are 83.6% and 93.2% at the pixel level, and the SE, specificity and accuracy are 95.2%, 86.2% and 90.8% respectively at the image level. The results obtained by testing on another independent DIARETDB1 database are 82.4%, 93.3%, 93.6%, 96.2%, 89.9%. Compared with other algorithms, this method can distinguish the exudates from other dark lesions, and the detection time is short, accurate and efficient.

Key words: diabetic retinopathy, fundus image, genetic algorithm, KSW entropy, image segmentation, hard exudates

中图分类号: 

  • TP391