[1] |
Cavan D, Makaroff L, Da Rocha Fernandes J, et al. The diabetic retinopathy barometer study: global perspectives on access to and experiences of diabetic retinopathy screening and treatment[J]. Diabetes Research and Clinical Practice, 2017,129(8):16-24.
|
[2] |
Shah A R, Gardner T W. Diabetic retinopathy: research to clinical practice[J]. Clinical Diabetes and Endocrinology, 2017,3(1):9-16.
|
[3] |
Jyoti P M, Samarendra D. An effective fovea detection and automatic assessment of diabetic maculopathy in color fundus images[J]. Computers in Biology and Medicine, 2016,74(9):30-44.
|
[4] |
Quellec, Gwenolé, Charrière, et al. Deep image mining for diabetic retinopathy screening[J]. Medical Image Analysis, 2017,39(2):178-193.
|
[5] |
Murugeswari S, Sukanesh R. Investigations of severity level measurements for diabetic macular oedema using machine learning algorithms[J]. Irish Journal of Medical Science, 2017,186(4):929-938.
doi: 10.1007/s11845-017-1598-8
pmid: 28508191
|
[6] |
Shilpa, Joshi, Karile P T. A review on exudates detection methods for diabetic retinopathy[J]. Biomedicine & Pharmacotherapy, 2018,9(7):1454-1460.
|
[7] |
Voets M, Mllersen K, Bongo L A. Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J/OL].(2018-08-30)[2019-07-10] http:∥arxiv.org/abs/1803.04337.
|
[8] |
Wisaeng K, Sa-Ngiamvibool W. Exudates detection using morphology mean shift algorithm in retinal images[J]. IEEE Access, 2019,1(3):11946-11958.
|
[9] |
Parham K, Leandro A, Passos J, et al. Exudate detection in fundus images using deeply-learnable features[J]. Computers in Biology and Medicine, 2019,104(7):62-69.
|
[10] |
Srivastava R, Duan L, Wong D W K, et al. Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels[J] Computer Methods and Programs in Biomedicine, 2017,138(6):83-91.
|
[11] |
Prenta I P, Lon Ari S. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion[J]. Computer Methods and Programs in Biomedicine, 2016,137(3):281-292.
|
[12] |
Feng Z, Yang J, Yao L, et al. Deep retinal image segmentation: a FCN-based architecture with short and long skip connections for retinal image segmentation[C]. Guangzhou:International Conference on Neural Information Processing, 2017.
|
[13] |
Tan J H, Fujita H, Sivaprasad S, et al. Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network[J]. Information Sciences, 2017,42(6):66-76.
|
[14] |
陈有信, 张碧磊, 张弘哲. 眼科人工智能技术的现状与问题[J]. 中华眼底病杂志, 2019,35(2):119-123.
|
|
Chen Youxin, Zhang Bilei, Zhang Hongzhe. Insights and prospectives of ophthalmologic artificial intelligence technology[J]. Chinese Journal of Ocular Fundus Diseases, 2019,35(2):119-123.
|
[15] |
Zheng R, Liu L. Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial network[J]. Biomedical Optics Express, 2018,8(10):56-68.
|
[16] |
Sanchez C I, Garcia M, Mayo A, et al. Retinal image analysis based on mixture models to detect hard exudates[J]. Medical Image Analysis, 2009,13(4):650-658.
pmid: 19539518
|
[17] |
段彦华, 周梦颖, 杨春兰, 等. 眼底图像中硬性渗出物检测算法[J]. 北京生物医学工程, 2018,37(1):1-8.
|
|
Duan Yanhua, Zhou Mengying, Yang Chunlan, et al. Algorithm of hard exudates detection in fundus image[J]. Beijing Biomedical Engineering, 2018,37(1):1-8.
|
[18] |
Carla P, Luís G, Manuel F. Exudate segmentation in fundus images using an ant colony optimization approach[J]. Information Sciences, 2015,29(6):14-24.
|
[19] |
João S, Adelino F, Gerardo F. An adaptive hybrid genetic algorithm for pavement management[J]. International Journal of Pavement Engineering, 2019,20(3):266-286.
|
[20] |
徐海, 秦立峰. 遗传算法改进的KSW熵法计算黄瓜叶部角斑病密度[J]. 安徽农业科学, 2017,45(32):212-215.
|
|
Xu Hai, Qing Lifeng. KSW entropy method improved by genetic algorithm for density of cucumber angular leaf spot calculation[J]. Journal of Anhui Agricultural Sciences, 2017,45(32):212-215.
|
[21] |
申小次. 基于遗传算法的二维熵图像分割方法的研究[D]. 北京:中国地质大学, 2008.
|
|
Shen Xiaoci. Two-dimensional entropy image segmentation based on genetic algorithm[D]. Beijing:China University of Geosciences, 2008.
|
[22] |
金元郁, 张洪波, 冯宇. 基于遗传算法的二维双阈值Otsu图像分割算法[J]. 电子科技, 2009,22(11):35-39.
|
|
Jin Yuanyu, Zhang Hongbo, Feng Yu. Two-Dimensional Two-Otsu threshold image segmentation based on the genetic algorithm[J]. Electronic Science and Technology, 2009,22(11):35-39.
|
[23] |
Elbalaoui A, Ouadid Y, Merbouha A. Segmentation of optic disc in fundus images using an active contour[J]. Journal of Electronic Commerce in Organizations, 2018,16(1):97-111.
doi: 10.4018/JECO
|
[24] |
姜平. 眼底图像分割方法研究[D]. 长春:吉林大学, 2018.
|
|
Jiang Ping. Study of retinal image segmentation method[D]. Changchun:Jilin University, 2018.
|
[25] |
Saleh M D, Salih N D, Eswaran C, et al. Automated segmentation of optic disc in fundus images[C]. Kuala Lumpur: International Colloquium on Signal Processing & Its Applications, 2014.
|
[26] |
王敏, 童水光, 陈玉辉, 等. 一种基于Hough变换的快速圆检测算法[J]. 机械工程与自动化, 2018(1):152-154.
|
|
Wang Min, Tong Shuiguang, Chen Yuhui, et al. A quick circle detection algorithm based on Hough transformation[J]. Mechanical Engineering & Automation, 2018(1):152-154.
|
[27] |
Diptoneel K, Nju S B. A new dynamic thresholding based technique for detection of hard exudates in digital retinal fundus image[C]. Noida:International Conference on Signal Processing and Integrated Networks(SPIN), 2014.
|
[28] |
Osareh A, Shadgar B, Markham R. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images[J]. IEEE Transactions on Information Technology in Biomedicine, 2009,13(4):535-545.
doi: 10.1109/TITB.2008.2007493
pmid: 19586814
|
[29] |
Xiao Z T, Li F, Geng L, et al. Hard exudates detection method based on background-estimation[C]. Tianjin:International Conference on Image and Graphics, 2015.
|
[30] |
Fraz M M, Jahangir W, Zahid S, et al. Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification[J]. Biomedical Signal Processing and Control, 2017,35(3):50-62.
doi: 10.1016/j.bspc.2017.02.012
|