电子科技 ›› 2022, Vol. 35 ›› Issue (4): 60-66.doi: 10.16180/j.cnki.issn1007-7820.2022.04.010

• • 上一篇    下一篇

基于突触可塑性的SNN随钻陀螺仪漂移处理

杨金显,韩玉鑫,刘鹏威   

  1. 河南理工大学 电气工程与自动化学院,河南 焦作 454000
  • 收稿日期:2020-12-25 出版日期:2022-04-15 发布日期:2022-04-15
  • 作者简介:杨金显(1980-),男,博士,副教授。研究方向:MEMS惯性测量在随钻、电网运动和变形监测中的应用。|韩玉鑫(1994-),男,硕士研究生。研究方向:惯性随钻陀螺仪误差测量。
  • 基金资助:
    国家自然科学基金(41672363);国家自然科学基金(U1404510);国家自然科学基金(61440007);河南省高等学校青年骨干教师培养计划(2018GGJS061);河南省创新型科技人才队伍设工程(CXTD2016054);河南理工大学青年骨干教师资助计划(2017XQG-07)

Drift Processing of Gyro While Drilling Based on Synaptic Plasticity Pulsed Neural Network

Jinxian YANG,Yuxin HAN,Pengwei LIU   

  1. School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China
  • Received:2020-12-25 Online:2022-04-15 Published:2022-04-15
  • Supported by:
    National Natural Science Foundation of China(41672363);National Natural Science Foundation of China(U1404510);National Natural Science Foundation of China(61440007);Training Plan for Young Key Teachers in Higher Schools in Henan Province(2018GGJS061);Henan Province Innovative Technology Talent Team Design Project(CXTD2016054);Henan Polytechnic University Young Key Teacher Funding Program(2017XQG-07)

摘要:

针对随钻振动引起MEMS陀螺仪的数据漂移问题,文中提出了一种脉冲神经网络算法。首先根据陀螺仪漂移误差的时间特性,利用脉冲网络的脉冲时间编码陀螺仪的信息强度。然后利用Izhikevich神经元模型的突触可塑性,调节激发性突触电导并抑制性突触电导,增强网络的鲁棒性,从而提高陀螺仪信号对噪声的抗干扰能力。在不同振动频率下,分析高斯白噪声输出神经元的点火率和膜电位间的相关性。实验结果表明,在不同频率的强振动下,噪声对输出神经元点火率及输出层神经元点火率相对变化的影响较小,对输出层神经元膜电位的影响较小,但是对膜电位间相关性的影响较大。该结果证明了文中所提方法提高了陀螺仪在振动噪声下的抗干扰能力,为陀螺仪漂移处理提供了新的思路。

关键词: 随钻振动, 数据漂移, 脉冲神经网络, 突触可塑性, 突触电导, 点火率, 膜电位相关性, 抗干扰

Abstract:

In view of the data drift problem of MEMS gyroscope caused by vibration while drilling, a spiking neural network algorithm is proposed in this study. First, according to the time characteristics of the drift error of the gyroscope, the pulse time of the spiking neural network is used to encode the information intensity of the gyroscope. Then, the synaptic plasticity of the Izhikevich neuron model is used to adjust the excitatory synaptic conductance and inhibitory synaptic conductance to enhance the robustness of the network, thereby improving the anti-interference ability of the gyroscope signal against noise. Finally, under different vibration frequencies, the correlation between the firing rate of the Gaussian white noise output neuron and the membrane potential is analyzed. Experimental results show that under strong vibrations of different frequencies, noise has little effect on the firing rate of output neurons and the relative change of firing rate of output layer neurons, and has little effect on the membrane potential of output layer neurons, but has a greater impact on the correlation between membrane potentials. These results indicate that the proposed method improves the anti-interference ability of the gyroscope under vibration and noise, and can provide a new idea for the processing of gyroscope drift.

Key words: vibration while drilling, data drift, spike neural network, synaptic plasticity, synaptic conductance, ignition rate, membrane potential correlation, disturbance rejection

中图分类号: 

  • TN96