[1] |
Chiang K W, Chang H W, Li Y H, et al. Assessment for INS/GNSS/odometer/barometer integration in loosely-coupled and tightly-coupled scheme in a GNSS-degraded environment[J]. IEEE Sensors Journal, 2019, 20(6):3057-3069.
doi: 10.1109/JSEN.2019.2954532
|
[2] |
Yu C, Haiyong L, Fang Z, et al. Adaptive Kalman filtering-based pedestrian navigation algorithm for smartphones[J]. International Journal of Advanced Robotic Systems, 2020, 17(3):1-14.
|
[3] |
Amanatiadis A. A multisensor indoor localization system for biped robots operating in industrial environments[J]. IEEE Transactions on Industrial Electronics, 2016, 63(12):7597-7606.
doi: 10.1109/TIE.2016.2590380
|
[4] |
Song Y, Nuske S, Scherer S. A multi-sensor fusion MAV state estimation from long-range stereo, IMU, GPS and barometric sensors[J]. Sensors, 2017, 17(1):11-37.
doi: 10.3390/s17010011
|
[5] |
朱轶峰. 基于WiFi-BP的室内定位算法[J]. 电子科技, 2020, 33(8):74-79.
|
|
Zhu Yifeng. Indoor positioning algorithm based on WiFi-BP[J]. Electronic Science and Technology, 2020, 33(8):74-79.
|
[6] |
Sun Y, Wang X, Zhang X, et al. ZigBee-based device-free wireless localization in internet of things[C]. Hangzhou:Proceedings of the International Conference on Machine Learning and Intelligent Communications, 2018.
|
[7] |
Hadj-Mihoub-Sidi-Moussa E H, Touhami R, Tedjini S. Design and evaluation of an RFID localization system based on read count[J]. IETE Journal of Research, 2021(3):1-10.
|
[8] |
Belka R, Deniziak R S, Łukawski G, et al. BLE-based indoor tracking system with overlapping-resistant IoT solution for tourism applications[J]. Sensors, 2021, 21(2):329-350.
doi: 10.3390/s21020329
|
[9] |
Brena R F, Garcia-Vazquez J P, Galvan-Tejada C E, et al. Evolution of indoor positioning technologies:A survey[J]. Journal of Sensors, 2017, 2017:1-21.
|
[10] |
Mazhar F, Khan M G, Sällberg B. Precise indoor positioning using UWB:A review of methods, algorithms and implementations[J]. Wireless Personal Communications, 2017, 97(3):4467-4491.
doi: 10.1007/s11277-017-4734-x
|
[11] |
Zeng Q, Liu D, Lü C. UWB/Binocular VO fusion algorithm based on adaptive Kalman filter[J]. Sensors, 2019, 19(18):4044-4063.
doi: 10.3390/s19184044
|
[12] |
Wang X, Jiang M, Guo Z, et al. An indoor positioning method for smartphones using landmarks and PDR[J]. Sensors, 2016, 16(12):2135-2152.
doi: 10.3390/s16122135
|
[13] |
Li X, Wang J, Liu C, et al. Integrated WiFi/PDR/smartphone using an adaptive system noise extended Kalman filter algorithm for indoor localization[J]. ISPRS International Journal of Geo-Information, 2016, 5(2):8-27.
doi: 10.3390/ijgi5020008
|
[14] |
刘琦, 沈锋, 王锐. 基于UWB定位系统硬件平台设计[J]. 电子科技, 2019, 32(10):22-27.
|
|
Liu Qi, Shen Feng, Wang Rui. Design of hardware platform for UWB positioning system[J]. Electronic Science and Technology, 2019, 32(10):22-27.
|
[15] |
Strohmeier M, Walter T, Rothe J, et al. Ultra-wideband based pose estimation for small unmanned aerial vehicles[J]. IEEE Access, 2018(6):57526-57535.
|
[16] |
Feng D, Wang C, He C, et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation[J]. IEEE Internet of Things Journal, 2020, 7(4):3133-3146.
doi: 10.1109/JIOT.2020.2965115
|
[17] |
Lu W, Wu F, Zhu H, et al. A step length estimation model of coefficient self-determined based on peak-valley detection[J]. Journal of Sensors, 2020, 20(2):1-14.
|
[18] |
Wu Y, Zhu H B, Du Q X, et al. A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[J]. International Journal of Automation and Computing, 2019, 16(1):65-83.
doi: 10.1007/s11633-018-1150-y
|
[19] |
陈皓, 何杰, 马凯, 等. 基于BP神经网络补偿卡尔曼滤波的UWB精定位算法[J]. 电子设计工程, 2019, 27(24):103-107.
|
|
Chen Hao, He Jie, Ma Kai, et al. Application of UWB precise positioning based on Kalman filter for power field operation safety[J]. Electronic Design Engineering, 2019, 27(24):103-107.
|