[1] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Columbus: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
|
[2] |
Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28(4):91-99.
|
[3] |
Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|
[4] |
Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]. Shanghai: International Conference on MachineLearning, 2019.
|
[5] |
Deng J, Guo J, Ververas E, et al. Retinaface: Single-shot multi-level face localisation in the wild[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|
[6] |
陈磊, 张孙杰, 王永雄. 基于改进的YOLOv3及其在遥感图像中的检测[J]. 小型微型计算机系统, 2020, 41(11):2321-2324.
|
|
Chen Lei, Zhang Sunjie, Wang Yongxiong. Based on improved YOLOv3 and its detection in remote sensing images[J]. Journal of Chinese Computer Systems, 2020, 41(11):2321-2324.
|
[7] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified,real-time object detection[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[8] |
Wang C Y, Bochkovskiy A, Liao H Y M. Scaled-YOLOv4: Scaling cross stage partial network[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
|
[9] |
Redmon J, Farhadi A. YOLOv3: An incremental improvement[C]. Salt Lake City: Proceedings of the Conference on Computer Vision and Pattern Recognition, 2018.
|
[10] |
Maas A L, Hannun A Y, Ng A Y. Rectifier nonlinearities improve neural network acoustic models[C]. Atlanta: Proceedings of the International Conference on Machine Learning, 2013.
|
[11] |
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Paris: International Conference on Machine Learning, 2015.
|
[12] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[13] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[14] |
Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.
|
[15] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional Nnetworks[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[16] |
Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.
|
[17] |
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
doi: 10.1109/TPAMI.2015.2389824
pmid: 26353135
|
[18] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[19] |
Wang W, Xie E, Song X, et al. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.
|
[20] |
Yun S, Han D, Oh S J, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.
|
[21] |
Ge S, Li J, Ye Q, et al. Detecting masked faces in the wild with lle-cnns[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[22] |
张春蕾, 牛馨苑. 结合YOLO的ORB双目图像匹配方法研究[J]. 小型微型计算机系统, 2020, 41(1):185-189.
|
|
Zhang Chunlei, Niu Xinyuan. Research on ORB binocular image matching method based on YOLO[J]. Journal of Chinese Computer Systems, 2020, 41(1):185-189.
|
[23] |
牛作东, 覃涛, 李捍东, 等. 改进RetinaFace的自然场景口罩佩戴检测算法[J]. 计算机工程与应用, 2020, 56(12):1-7.
doi: 10.3778/j.issn.1002-8331.2002-0402
|
|
Niu Zuodong, Qin Tao, Li Handong, et al. Improved algorithm of retinaFace for Natural scene mask wear detection[J]. Computer Engineering and Applications, 2020, 56(12):1-7.
doi: 10.3778/j.issn.1002-8331.2002-0402
|
[24] |
张修宝, 林子原, 田万鑫, 等. 全天候自然场景下的人脸佩戴口罩识别技术[J]. 中国科学:信息科学, 2020, 50(7):1110-1120.
|
|
Zhang Xiubao, Lin Ziyuan, Tian Wanxin, et al. Mask-wearing recognition in the wild[J]. Science in China: Information Sciences, 2020, 50(7):1110-1120.
|
[25] |
邓黄潇. 基于迁移学习与RetinaNet的口罩佩戴检测的方法[J]. 电子技术与软件工程, 2020(5):209-211.
|
|
Deng Huangxiao. Method of mask wearing detection based on transfer learning and RetinaNet[J]. Electronic Technology and Software Engineering, 2020(5):209-211.
|
[26] |
赵崇, 迟蒙蒙, 储聪, 等. 导盲犬行走机构运动仿真及其视觉识别算法研究[J]. 电子科技, 2021, 34(9):66-72.
|
|
Zhao Chong, Chi Mengmeng, Chu Cong, et al. Research on motion simulation and visual recognition algorithm of guide dog walking mechanism[J]. Electronic Science and Technology, 2021, 34(9):66-72.
|