[1] |
杨德友, 刘世宇. 求解电力系统多目标环境经济调度的帕累托最优MFO算法[J]. 电工电能新技术, 2018, 37(2):30-37.
doi: 10.12067/ATEEE1706064
|
|
Yang Deyou, Liu Shiyu. Multi-objective economic-enviro-nmental dispatch based on Pareto optimal moth-flame optimization algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(2):30-37.
doi: 10.12067/ATEEE1706064
|
[2] |
王玉梅, 张继钦, 周永鑫. 计及碳交易和价格型需求响应的热电联合低碳经济调度[J]. 电子科技, 2023, 36(10):74-81.
|
|
Wang Yumei, Zhang Jiqin, Zhou Yongxin. Combined heat and power low-carbon economic scheduling consideringcarbon trading and price demand response[J]. Eletronic Science and Techonolgy, 2023, 36(10):74-81.
|
[3] |
Guo T, Henwood M I, Van Ooijen M. An algorithm for combined heat and power economic dispatch[J]. IEEE Transactions on Power Systems, 1996, 11(4):1778-1784.
|
[4] |
Narang N, Sharma E, Dhillon J S. Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell's pattern search method[J]. Applied Soft Computing, 2017, 52(1):190-202.
|
[5] |
Nasir M, Sadollah A, Aydilek Í B, et al. A combination of FA and SRPSO algorithm for combined heat and power economic dispatch[J]. Applied Soft Computing, 2021, 102(1):88-98.
|
[6] |
Khalili M, Nikoukar J, Sedighizadeh M. Combined heat and power economic dispatch using improved shuffled frog leaping algorithm[J]. Journal of Advances in Computer Research, 2021, 12(1):1-11.
|
[7] |
Zou D, Li S, Kong X, et al. Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy[J]. Applied Energy, 2019, 237(1):646-670.
|
[8] |
Sundaram A. Multiobjective multiverse optimization algorithm to solve combined economic,heat and power emission dispatch problems[J]. Applied Soft Computing, 2020, 91(1):6195-6209.
|
[9] |
Xiong G, Shuai M, Hu X. Combined heat and power economic emission dispatch using improved bare-bone multiobjective particle swarm optimization[J]. Energy, 2022, 244(1):3108-3127.
|
[10] |
Jadoun V K, Prashanth G R, Joshi S S, et al. Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled whale optimization algorithm[J]. Applied Energy, 2022, 315(1):33-50.
|
[11] |
Niknam T, Azizipanah-Abarghooee R, Roosta A, et al. A new multiobjective reserve constrained combined heatand power dynamic economic emission dispatch[J]. Energy, 2012, 42(1):530-545.
|
[12] |
Elaiw A M, Xia X, Shehata A M. Combined heat and power dynamic economic dispatch with emission limitations using hybrid DE-SQP method[J]. Abstract and Applied Analysis, 2013(7):1-10.
|
[13] |
Basu M. Combined heat and power economic emission dispatch using nondominated sorting genetic algorithm-II[J]. International Journal of Electrical Power and Energy Systems, 2013, 53(1):135-141.
|
[14] |
Alomoush M I. Application of the stochastic fractal search algorithm and compromise programming to combined heat and power economic-emission dispatch[J]. Engineering Optimization, 2020, 52(11):1992-2010.
|
[15] |
Chen X, Li K, Xu B, et al. Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem[J]. Knowledge-Based Systems, 2020, 208(15):106463-106469.
|
[16] |
赖俊, 魏竞毅, 陈希亮. 分层强化学习综述[J]. 计算机工程与应用, 2021, 57(3):72-79.
doi: 10.3778/j.issn.1002-8331.2010-0038
|
|
Lai Jun, Wei Jingyi, Chen Xiliang. Overview of hierarchical reinforcement learnin[J]. Computer Engineering and Applications, 201, 57(3):72-79.
|
[17] |
郑敦勇, 姚宜斌, 聂文锋, 等. 基于机器学习集成算法的电离层层析算法迭代初值精化[J]. 地球物理学报, 2022, 65(8):2796-2812.
|
|
Zheng Dunyong, Yao Yibin, Nie Wenfeng, et al. Iterative initial value refinement of ionospheric tomography algorithm based on machine learning ensemble algorithm[J]. Chinese Journal of Geophysics, 2022, 65(8):2796-2812.
|
[18] |
Hu Z, Gong W, Li S. Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models[J]. Energy Reports, 2021(7):916-928.
|
[19] |
张秦浩, 敖百强, 张秦雪. Q-learning强化学习制导律[J]. 系统工程与电子技术, 2020, 42(2):414-419.
doi: 10.3969/j.issn.1001-506X.2020.02.21
|
|
Zhang Qinhao, Ao Baiqiang, Zhang Qinxue. Reinforcemen tlearning guidance law of Q-learning[J]. Systems Engineering and Electronics, 2020, 42(2):414-419.
doi: 10.3969/j.issn.1001-506X.2020.02.21
|
[20] |
Watkins C J C H, Dayan P. Q-learning[J]. Machine Learning, 1992, 8(3):279-292.
|
[21] |
葛传九, 武鹏, 金俊喆, 等. 基于改进差分进化算法的光伏最大功率点跟踪[J]. 电子科技, 2022, 35(9):15-21.
|
|
Ge Chuanjiu, Wu Peng, Jin Junzhe, et al. Photovoltaic maximum power point tracking based on improved differential evolution algorithm[J]. Electronic Science and Technology, 2022, 35(9):15-21.
|
[22] |
冯士刚, 艾芊. 带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用[J]. 电工技术学报, 2007(12):146-151.
|
|
Feng Shigang, Ai Qian. Application of fast and elitist non-dominated sorting generic algorithm in multiobjective reactive power optimization[J]. Transaction of China Electrotechnical Society, 2007(12):146-151.
|
[23] |
Shaabani Y A, Seifi A R, Kouhanjani M J. Stochastic multiobjective optimization of combined heat and power economic/emission dispatch[J]. Energy, 2017, 141(15):1892-1904.
|
[24] |
Kukkonen S, Lampinen J. GDE3:The third evolution step of generalized differential evolution[C]. Edinburgh: IEEE Congress on Evolutionary Computation, 2005:117-128.
|
[25] |
Li H, Zhang Q. Multi-objective optimization problems with complicated Pareto sets,MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2008, 13(2):284-302.
|
[26] |
Chen X, Du W, Qian F. Multi-objective differential evolution with ranking-based mutation operator and it's application in chemical process optimization[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 136(15):85-96.
|
[27] |
Zitzler E, Thiele L. Multi-objective evolutionary algorithms:A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4):257-271.
|
[28] |
Coello C A C, Cortés N C. Solving multi-objective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2):163-190.
|