›› 2012, Vol. 25 ›› Issue (6): 136-.

• 论文 • 上一篇    下一篇

一种基于SLS_SVM的滚动轴承故障诊断方法

柴美娟,柳桂国   

  1. (浙江工商职业技术学院 设备与设备管理办公室,浙江 宁波 315012)
  • 出版日期:2012-06-15 发布日期:2012-08-23
  • 作者简介:柴美娟(1980—),女,硕士,高级工程师。研究方向:智能控制和模式识别。柳桂国(1963—),男,博士,副教授。研究方向:模式识别。
  • 基金资助:

    浙江省科技计划基金资助项目(2009C31105)

A Fault Identification Method for Rolling Bearing Based on SLS_SVM

 CHAI Mei-Juan, LIU Gui-Guo   

  1. (Office of Equipment and Equipment Management,Zhejiang Business Vocational Institute,Ningbo 315012,China)
  • Online:2012-06-15 Published:2012-08-23

摘要:

为提高滚动轴承故障诊断分类器的训练正确率,以及缩短训练时间,根据其训练集即含有标签样本,也含有无标签样本的特点,将LS_SVM与半监督学习相结合,充分利用训练集中的有效信息,给出一种基于SLS_SVM的滚动轴承故障诊断方法。将该方法与标准SVM和半监督学习SVM方法相比,其不但能提高训练正确率,也能缩短训练所需时间。通过诊断试验,验证了该算法的有效性以及高效性。

关键词: 滚动轴承, 最小二乘支持向量机, 半监督学习, 故障诊断

Abstract:

To improve the rate of correct training of the fault identification sorter of rolling bearing and shorten the training time,LS_SVM is combined with semi-supervised learning according to the fact that the training sets have both labeled and unlabeled examples.Full use is made of the effective information in the training sets and a novel SLS_SVM based fault identification method for rolling bearing is proposed.A comparison of this method with the standard SVM and semi-supervised learning based on the SVM method shows that this method can not only improve the rate of correct training but also shorten the training time.The diagnostic tests show that it is an effective and efficient method.

Key words: rolling bearing;LS_[KG-2mm]SVM;semi-supervised learning;fault identification

中图分类号: 

  • TH133.33