[1] |
张力, 黄影平 . 实时双目立体视觉系统的实现[J]. 电子科技, 2016,29(3):68-70.
|
|
Zhang Li, Huang Yingping . Implementation of real-time binocular stereo vision system[J]. Electronic Science and Technology, 2016,29(3):68-70.
|
[2] |
Hosni A, Rhemann C, Bleyer M , et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(2):504-11.
doi: 10.1109/TPAMI.2012.156
|
[3] |
林川 . 基于新扫描策略的快速立体匹配算法[J]. 电子科技, 2011,24(8):12-15.
|
|
Lin Chuan . Fast stereo matching algorithm based on new scanning strategy[J]. Electronic Science and Technology, 2011,24(8):12-15.
|
[4] |
Kanade T, Okutomi M . A stereo matching algorithm with an adaptive window: Theory and experiment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16(9):920-932.
|
[5] |
Yoon K J, Kweon I S . Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(4):650-656.
|
[6] |
Hirschmuller H . Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2008,30(2):328-341.
|
[7] |
Cheng F, Zhang H, Sun M , et al. Cross-trees, edge and superpixel priors-based cost aggregation for Stereo matching[J]. Pattern Recognition, 2015,48(7):2269-2278.
|
[8] |
刘杰, 张建勋, 代煜 . 基于区域增长的稠密立体匹配[J]. 机器人, 2017,39(2):182-188.
|
|
Liu Jie, Zhang Jianxun, Dai Yu . Dense stereo matching based on region growing[J]. Robot, 2017,39(2):182-188.
|
[9] |
Min D, Lu J, Do M N . Joint histogram-based cost aggregation for stereo matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(10):2539-2545.
doi: 10.1109/TPAMI.2013.15
|
[10] |
Wang L Q, Liu Z, Zhang Z H . Feature based stereo matching using two-step expansion[J].Mathematical Problems in Engineering 2014(14):452803-452809.
|
[11] |
祝世平, 闫利那, 李政 . 基于改进Census 变换和动态规划的立体匹配算法[J]. 光学学报, 2016,36(4):0415001-415018.
|
|
Zhu Shiping, Yan Lina, Li Zheng . Stereo Matching algorithm based on Improved census transform and dynamic programming[J]. Acta Optics Sin, 2016,36(4):0415001-0415018.
|
[12] |
Scharstein D, Szeliski R . A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002,47(1-3):7-42.
doi: 10.1023/A:1014573219977
|
[13] |
Taniai T, Matsushita Y, Naemura T. Graph cut based continuous stereo matching using locally shared labels [C].Columbus:IEEE Conference on Computer Vision and Pattern Recognition,IEEE Computer Society, 2014.
|
[14] |
Yang Q. A non-local cost aggregation method for stereo matching [C]. Providence:Computer Vision and Pattern Recognition,IEEE, 2012.
|
[15] |
Chang X, Zhou Z, Wang L, et al. Real-time accurate stereo matching using modified two-pass aggregation and winner-take-all guided dynamic programming [C]. Hangzhou:International Conference on 3D Imaging, Modeling, Processing,Visualization and Transmission, 2011.
|
[16] |
Rhemann C, Hosni A, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond [C]. Colorado Springs:IEEE Conference on Computer Vision and Pattern Recognition, 2011.
|
[17] |
Psota E T, Kowalczuk J, Carlson J , et al. A local iterative refinement method for adaptive support-weight stereo matching[C].Las Vegas:Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition(IPCV) , 2011.
|
[18] |
Wang L, Yang R. Global stereo matching leveraged by sparse ground control points [C]. Colorado Springs:IEEE Conference on Computer Vision and Pattern Recognition, 2011.
|