Electronic Science and Technology ›› 2020, Vol. 33 ›› Issue (12): 17-21.doi: 10.16180/j.cnki.issn1007-7820.2020.12.004
Previous Articles Next Articles
WANG Hehe,LI Feifei,CHEN Qiu
Received:
2019-09-19
Online:
2020-12-15
Published:
2020-12-22
Supported by:
CLC Number:
WANG Hehe,LI Feifei,CHEN Qiu. Research on Dynamic Gesture Recognition Based on Dense Trajectories Features[J].Electronic Science and Technology, 2020, 33(12): 17-21.
[1] |
Wang C, Liu Z, Chan S C. Superpixel-based hand gesture recognition with kinect depth camera[J]. IEEE Transactions on Multimedia, 2015,17(1):29-39.
doi: 10.1109/TMM.2014.2374357 |
[2] |
Ren Z, Yuan J, Meng J, et al. Robust part-based hand gesture recognition using kinect sensor[J]. IEEE Transactions on Multimedia, 2013,15(5):1110-1120.
doi: 10.1109/TMM.2013.2246148 |
[3] |
Hikawa H, Kaida K. Novel FPGA implementation of hand sign recognition system with SOM-hebb classifier[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015,25(1):153-166.
doi: 10.1109/TCSVT.2014.2335831 |
[4] | Marin G, Dominio F, Zanuttigh P. Hand gesture recognition with leap motion and kinect devices[C]. Paris:IEEE International Conference on Image Processing, 2014. |
[5] | Kuznetsova A, Laura Leal-Taixé, Rosenhahn B. Real-time sign language recognition using a consumer depth camera[C]. Sydney:IEEE International Conference on Computer Vision Workshops, 2013. |
[6] |
Yao Y, Fu Y. Contour model-based hand-gesture recognition using the kinect sensor[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014,24(11):1935-1944.
doi: 10.1109/TCSVT.2014.2302538 |
[7] | Prasuhn L, Oyamada Y, Mochizuki Y, et al. A HOG-based hand gesture recognition system on a mobile device[C]. Paris:IEEE International Conference on Image Processing, 2014. |
[8] |
Schramm R, Jung C R, Miranda E R. Dynamic time warping for music conducting gestures evaluation[J]. IEEE Transactions on Multimedia, 2015,17(2):243-255.
doi: 10.1109/TMM.2014.2377553 |
[9] | Lian S, Hu W, Wang K. Automatic user state recognition for hand gesture based low-cost television control system[J]. IEEE Transactions on Consumer Electronics, 2014,60(1):107-115. |
[10] | Sathayanarayana S, Satzoda R K, Carini A, et al. Towards automated understanding of student-tutor interactions using visual deictic gestures[C]. Columbus:IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014. |
[11] | 程文山. 基于肤色分割和 Camshift 的手势识别研究[D]. 武汉:华中师范大学, 2009. |
Cheng Wenshan. The research of hand gesture recognition based on skin color and Camshift algorithm[D]. Wuhan: Central China Normal University, 2009. | |
[12] | Ruan X, Tian C. Dynamic gesture recognition based on improved DTW algorithm[C]. Beijing:IEEE International Conference on Mechatronics and Automation, 2015. |
[13] | Zhang M, Wang B, Zhou S, et al. Dynamic gesture recognition based on edge feature enhancement using sobel operator[C]. Bournemouth:International Conference on Technologies for E-learning and Digital Entertainment, 2017. |
[14] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
[15] | Wang H, Klaser A, Schmid C, et al. Action recognition by dense trajectories[C]. Providence:Computer Vision and Pattern Recognition, 2011. |
[16] | Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion[C]. Halmstad:The Thirteeth Scandinavian Conference on Image Analysis, 2003. |
[17] | Dollar P, Rabaud V, Cottrell G, et al. Behavior recognition via sparse spatio-temporal features[C]. Beijing:IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005. |
[18] | Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. San Diego:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. |
[19] | Laptev I, Marszalek M, Schmid C, et al. Learning realistic human actions from movies[C]. Anchorage:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2008. |
[20] | Dalal N, Triggs B, Schmid C, et al. Human detection using oriented histograms of flow and appearance[C]. Graz: European Conference on Computer Vision, 2006. |
[21] | Perronnin F, Sanchez J, Mensink T, et al. Improving the fisher kernel for large-scale image classification[C]. Heraklion:European Conference on Computer Vision, 2010. |
[22] |
Xu H, Tian Q, Wang Z, et al. A survey on aggregating methods for action recognition with dense trajectories[J]. Multimedia Tools and Applications, 2016,75(10):5701-5717.
doi: 10.1007/s11042-015-2536-2 |
[23] | Fan R, Chang K, Hsieh C, et al. Liblinear: a library for large linear classification[J]. Journal of Machine Learning Research, 2008,9(8):1871-1874. |
[24] | Kim T, Wong S, Cipolla R, et al. Tensor canonical correlation analysis for action classification[C]. Minneapolis:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007. |
[25] | Liu L, Shao L. Learning discriminative representations from RGB-D video data[C]. Beijing:International Joint Conference on Artificial Intelligence, 2013. |
[26] | Shao L, Cai Z, Liu L, et al. Performance evaluation of deep feature learning for RGB-D image/video classification[J]. Information Sciences, 2017,385(C):266-283. |
[27] |
Liu M, Liu H, Chen C. 3D action recognition using multi-scale energy-based global ternary image[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018,28(8):1824-1838.
doi: 10.1109/TCSVT.2017.2655521 |
[28] |
Reza A, Maryam A A, Shohreh K, et al. Dynamic 3D hand gesture recognition by learning weighted depth motion maps[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019,29(6):1729-1740.
doi: 10.1109/TCSVT.76 |
[29] |
Xing M, Hu J, Feng Z, et al. Dynamic hand gesture recognition using motion pattern and shape descriptors[J]. Multimedia Tools and Applications, 2019,78(8):10649-10672.
doi: 10.1007/s11042-018-6553-9 |
[30] |
Hsieh C, Lin W. Video-based human action and hand gesture recognition by fusing factored matrices of dual tensors[J]. Multimedia Tools and Applications, 2017,76(6):7575-7594.
doi: 10.1007/s11042-016-3407-1 |
[31] |
Patil A R, Subbaraman S. A spatiotemporal approach for vision-based hand gesture recognition using Hough transform and neural network[J]. Signal, Image and Video Processing, 2019,13(2):413-421.
doi: 10.1007/s11760-018-1370-1 |
[32] | Li J, Huai H, Gao J, et al. Spatial-temporal dynamic hand gesture recognition via hybrid deep learning model[J]. Journal on Multimodal User Interfaces, 2019(9):1-9. |
[33] | Tang H, Liu H, Xiao W, et al. Fast and robust dynamic hand gesture recognition via key frames extraction and feature fusion[J]. Neurocomputing, 2019,33(1):424-433. |
[1] | WU Weijia,YANG Jian,YUAN Tianchen,SHAO Zhihui. Research on Track Structure Damage Identification Based on Support Vector Machine [J]. Electronic Science and Technology, 2022, 35(2): 27-33. |
[2] | SHAO Zhihui,YANG Jian,YUAN Tianchen,WU Weijia. Sleeper Diseases Diagnosis Based on Permutation Entropy and Support Vector Machine [J]. Electronic Science and Technology, 2022, 35(2): 52-58. |
[3] | ZHANG Pengfei,WEI Cunwei,LIU Xiankang,LIU Anran,YANG Ou,LIN Yonglin. Research on Ship Target Recognition Method of Narrowband Radar [J]. Electronic Science and Technology, 2021, 34(6): 50-55. |
[4] | LIU Shu,SHAO Jie,ZHANG Yiting,ZHANG Shanzhang. ECG Classification Based on Bispectrum and Spectral Features [J]. Electronic Science and Technology, 2021, 34(5): 42-46. |
[5] | LI Zhaoji,WANG Haipeng,RUAN Weihua,HUANG Shuhao. Circuit and System Design for Assisting Virtual Reality with Data Glove and Electric Stimulation Tactile Enhancement Feedback [J]. Electronic Science and Technology, 2021, 34(3): 28-36. |
[6] | JU Zhiyong,ZHAI Chunyu,ZHANG Wenxin. Color Commodity Label Image Segmentation Method Based on SVM and Region Growth [J]. Electronic Science and Technology, 2021, 34(10): 69-74. |
[7] | JIN Xin,FENG Yi,YOU Xuexi,WANG Jiaxin. Research on Information Security Equipment Deployment Guarantee Technology [J]. Electronic Science and Technology, 2020, 33(8): 80-86. |
[8] | YANG Haizhu,JIANG Zhaoyang,LI Menglong,KANG Le. Parameters Selection for LSSVM Based on Artificial Fish Swarm-Shuffled Frog Jump Algorithms Optimization in Short-Term Load Forecasting [J]. Electronic Science and Technology, 2020, 33(12): 67-74. |
[9] | YANG Yu,ZENG Guohui,HUANG Bo. A Transformer Fault Diagnosis Method Integrating Artificial Fish Swarm Algorithm with Least Square Support Vector Machine [J]. Electronic Science and Technology, 2020, 33(11): 36-40. |
[10] | LI Chao,GUO Yu. Research on Performance Evaluation of Rolling Bearing Performance Based on SK and Other Indicators and SVM [J]. Electronic Science and Technology, 2020, 33(1): 6-12. |
[11] | SUN Liping,ZHANG Ximeng,HE Rui,LI Jiaqi. Near-infrared Scanning Polysaccharide Content Classification of Auricularia Auricular Based on SVM [J]. Electronic Science and Technology, 2019, 32(8): 16-21. |
[12] | ZHONG Mingtuo,CAI Wenyu. Marine Mammal Sound Recognition Based on Feature Fusion [J]. Electronic Science and Technology, 2019, 32(5): 32-37. |
[13] | WANG Lanbo,LI Haolin,CHI Yulun. Prediction of Surface Grinding Quality Based on SMO-SVM [J]. , 2017, 30(4): 110-. |
[14] | WEI Wenbo,CAI Hongjun. Narrowband Radar Ballistic Missile Target Recognition Technology Based on SVM [J]. , 2016, 29(6): 75-. |
[15] | LI Jiankun1, SONG Shoupeng1, LI Jianping2, LI Xiang1, DING Nan1. Diagnosis of Crossflow Fan Leaf Blade Adhesion Defects Based on Support Vector Machine [J]. , 2016, 29(11): 154-. |