Electronic Science and Technology ›› 2020, Vol. 33 ›› Issue (12): 67-74.doi: 10.16180/j.cnki.issn1007-7820.2020.12.013
Previous Articles Next Articles
YANG Haizhu,JIANG Zhaoyang,LI Menglong,KANG Le
Received:
2019-09-06
Online:
2020-12-15
Published:
2020-12-22
Supported by:
CLC Number:
YANG Haizhu,JIANG Zhaoyang,LI Menglong,KANG Le. Parameters Selection for LSSVM Based on Artificial Fish Swarm-Shuffled Frog Jump Algorithms Optimization in Short-Term Load Forecasting[J].Electronic Science and Technology, 2020, 33(12): 67-74.
Table 2
Prediction results of three models"
时 段 | 负荷实际值 /MW | AFSA- LSSVM | LAFSA-SFLA- LSSVM | LAVAFSA-SFLA -LSSVM |
---|---|---|---|---|
1 | 812.97 | 778.55 | 780.58 | 800.99 |
2 | 760.08 | 712.10 | 715.31 | 732.15 |
3 | 731.84 | 701.89 | 708.88 | 712.98 |
4 | 686.69 | 652.36 | 663.59 | 671.71 |
5 | 652.28 | 625.56 | 628.27 | 630.19 |
6 | 619.81 | 590.21 | 595.78 | 599.61 |
7 | 608.22 | 571.01 | 579.36 | 582.98 |
8 | 580.51 | 548.15 | 550.23 | 558.31 |
9 | 622.92 | 595.93 | 596.58 | 599.78 |
10 | 670.84 | 630.59 | 633.13 | 650.84 |
11 | 737.49 | 705.89 | 709.21 | 712.89 |
12 | 825.60 | 775.70 | 780.67 | 800.90 |
13 | 843.53 | 803.98 | 809.87 | 817.37 |
14 | 837.21 | 802.11 | 810.86 | 825.41 |
15 | 824.04 | 780.39 | 785.26 | 800.03 |
16 | 813.45 | 765.82 | 769.43 | 795.24 |
17 | 802.63 | 747.69 | 765.57 | 789.79 |
18 | 778.18 | 733.89 | 741.56 | 753.85 |
19 | 739.08 | 700.82 | 710.12 | 723.99 |
20 | 722.38 | 675.36 | 688.15 | 700.98 |
21 | 769.04 | 735.81 | 739.53 | 744.04 |
22 | 822.65 | 780.69 | 786.84 | 800.67 |
23 | 860.68 | 806.81 | 812.41 | 842.64 |
24 | 822.05 | 788.03 | 792.96 | 810.34 |
[1] |
廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制, 2011,39(1):147-152.
doi: 10.7667/j.issn.1674-3415.2011.01.028 |
Liao Nihuan, Hu Zhihong, Ma Yingying, et al. Review of the short-term load forecasting methods of electric power system[J]. Power System Protection and Control, 2011,39(1):147-152.
doi: 10.7667/j.issn.1674-3415.2011.01.028 |
|
[2] | 蒋小亮, 蒋传文, 彭明鸿, 等. 基于时间连续性及季节周期性的风速短期组合预测方法[J]. 电力系统自动化, 2010,34(15):75-79. |
Jiang Xiaoliang, Jiang Chuanwen, Peng Minghong, et al. A short-term combination wind speed forecasting method considering seasonal periodicity and time-continuity[J]. Automation of Electric Power Systems, 2010,34(15):75-79. | |
[3] | 张健美, 周步祥, 林楠, 等. 灰色Elman神经网络的电网中长期负荷预测[J]. 电力系统及其自动化学报, 2013,25(4):145-149. |
Zhang Jianmei, Zhou Buxiang, Lin Nan, et al. Prediction of mid-long term load based on gray elman neural networks[J]. Proceedings of the CSU-EPSA, 2013,25(4):145-149. | |
[4] | 万昆, 柳瑞禹. 区间时间序列向量自回归模型在短期电力负荷预测中的应用[J]. 电网技术, 2012,36(11):77-81. |
Wan Kun, Liu Ruiyu. Application of interval time-series vector autoregressive model in short-term load forecasting[J]. Power System Technology, 2012,36(11):77-81. | |
[5] | 周德强, 武本令. 灰色BP神经网络模型的优化及负荷预测[J]. 电力系统保护与控制, 2011,39(21):65-69. |
Zhou Deqiang, Wu Benling. Optimization and power load forecasting of gray BP neural network model[J]. Power System Protection and Control, 2011,39(21):65-69. | |
[6] | 房乐楠, 何腾鹏, 刘宇红. 一种改进型PSO算法在SVM参数寻优种的应用[J]. 电子科技, 2018,31(6):17-19,31. |
Fang Lenan, He Tengpeng, Liu Yuhong. Application of an improved PSO algorithm in SVM parameter optimization[J]. Electronic Science and Technology, 2018,31(6):17-19,31. | |
[7] | 王奔, 冷北雪, 张喜海. 支持向量机在短期负荷预测中的应用概况[J]. 电力系统及其自动化学报, 2011,23(4):115-121. |
Wang Ben, Leng Beixue, Zhang Xihai. Application profiles of support vector machine in short-term load forecasting[J]. Procceedings of the CSU-EPSA, 2011,23(4):115-121. | |
[8] |
傅美平, 马红伟, 毛建容. 基于相似日和最小二乘支持向量机的光伏发电短期预测[J]. 电力系统保护与控制, 2012,40(16):65-69.
doi: 10.7667/j.issn.1674-3415.2012.16.011 |
Fu Meiping, Ma Hongwei, Mao Jianrong. Short-term photovoltaic power forecasting based on similar days and least square support vector machine[J]. Power System Protection and Control, 2012,40(16):65-69.
doi: 10.7667/j.issn.1674-3415.2012.16.011 |
|
[9] |
陈刚, 闫飞, 王烨, 等. 基于参数优化的最小二乘支持向量机状态估计方法[J]. 电力系统保护与控制, 2011,39(19):83-88.
doi: 10.7667/j.issn.1674-3415.2011.19.014 |
Cheng Gang, Yan Fei, Wang Ye, et al. State estimate based on parameter-optimized least square support vector machines[J]. Power System Protection and Control, 2011,39(19):83-88.
doi: 10.7667/j.issn.1674-3415.2011.19.014 |
|
[10] |
李霄, 王昕, 郑益慧, 等. 基于改进最小二乘支持向量机和预测误差校正的短期风电负荷预测[J]. 电力系统保护与控制, 2015,43(11):63-69.
doi: 10.7667/j.issn.1674-3415.2015.11.010 |
Li Xiao, Wang Xin, Zheng Yihui, et al. Short-term wind load forecasting based on improved LSSVM and error forecasting correction[J]. Power System Protection and Control, 2015,43(11):63-69.
doi: 10.7667/j.issn.1674-3415.2015.11.010 |
|
[11] | 吴景龙, 杨淑霞, 刘承水. 基于遗传算法优化参数的支持向量机短期负荷预测方法[J]. 中南大学学报(自然科学版), 2009,40(1):180-184. |
Wu Jinglong, Yang Shuxia, Liu Chengshui. Parameter selection for support vector machines based on genetic alrorithms to short-term power load forecasting[J]. Journal of Central South University(Science and Technology Edition), 2009,40(1):180-184. | |
[12] |
Wang W C, Xu D M, Chau K W, et al. Improved annual rainfall-runoff forecasting using PSO-SVM model based on EEMD[J]. Journal of Hydroinformatics, 2013,15(4):1377-1390.
doi: 10.2166/hydro.2013.134 |
[13] | 龙文, 梁昔明, 龙祖强, 等. 基于改进蚁群算法优化LSSVM短期负荷预测[J]. 中南大学学报(自然科学版), 2011,42(11):3408-3414. |
Long Wen, Liang Ximing, Long Zuqiang, et al. Parameters selection for LSSVM based on modified ant colony optimization in short-term load forecasting[J]. Journal of Central South University(Science and Technology), 2011,42(11):3408-3414. | |
[14] |
费腾, 张立毅, 陈雷. 混合Levy变异与混沌变异的改进人工鱼群算法[J]. 计算机工程, 2016,42(7):146-152,158.
doi: 10.3969/j.issn.1000-3428.2016.07.025 |
Fei Teng, Zhang Liyi, Chen Lei. Improved artificial fish-swarm algorithm mixing Levy mutation and chaotic mutation[J]. Computer Engineering, 2016,42(7):146-152,158.
doi: 10.3969/j.issn.1000-3428.2016.07.025 |
|
[15] | 景坤雷, 赵小国, 张新雨, 等. 具有levy变异和精英自适应竞争机制的蚁狮优化算法[J]. 智能系统学报, 2018,13(2):236-242. |
Jing Kunlei, Zhao Xiaoguo, Zhang Xinyu, et al. Ant lion optimizer with levy variation and adaptive elite competition mechanism[J]. CAAI Transactions on Intelligent Systems, 2018,13(2):236-242. | |
[16] | 张晓博, 彭进业, 刘恬. 自适应视野和步长的混沌人工鱼群算法[J]. 微电子学与计算机, 2019,36(6):5-9,14. |
Zhang Xiaobo, Peng Jinye, Liu Tian. Adaptive visual field and step length of chaotic artificial fish swarm algorithm[J]. Microelectronics and Computer, 2019,36(6):5-9,14. | |
[17] | 马宪民, 刘妮. 自适应视野的人工鱼群算法求解最短路径问题[J]. 通信学报, 2014,35(1):1-6. |
Ma Xianmin, Liu Ni. Improved artificial fish-swarm algorithm based on adaptive vision for solving the shortest path problem[J]. Journal on Communications, 2014,35(1):1-6. | |
[18] | 朱旭辉, 倪志伟, 程美英. 变步长自适应的改进人工鱼群算法[J]. 计算机科学, 2015,42(2):210-216,246. |
Zhu Xuhui, Ni Zhiwei, Cheng Meiying. Self-adaptive improved artificial fish swarm algorithm with changing step[J]. Computer Science, 2015,42(2):210-216,246. | |
[19] | 王波. 基于自适应t分布混合变异的人工鱼群算法[J]. 计算机工程与科学, 2013,35(4):120-124. |
Wang Bo. Artificial fish-school algorithm based on adaptive t distribution mixed mutation[J]. Computer Engineering and Science, 2013,35(4):120-124. | |
[20] | 崔文华, 刘晓冰, 王伟, 等. 混合蛙跳算法研究综述[J]. 控制与决策, 2012,27(4):481-486,493. |
Cui Wenhua, Liu Xiaobing, Wang Wei, et al. Survey on shuffed frog leaping algorithm[J]. Control and Decision, 2012,27(4):481-486,493. | |
[21] |
张沈习, 陈楷, 龙禹, 等. 基于混合蛙跳算法的分布式风电源规划[J]. 电力系统自动化, 2013,37(13):76-82.
doi: 10.7500/AEPS201207219 |
Zhang Shenxi, Chen Kai, Long Yu, et al. Distributed wind generator planning based on shuffled frog leaping algorithm[J]. Automation of Electric Power Systems, 2013,37(13):76-82.
doi: 10.7500/AEPS201207219 |
|
[22] | 代永强, 王联国, 施秋红, 等. 改进的混合蛙跳算法性能分析及其在电力系统经济调度中的应用[J]. 电力系统保护与控制, 2012,40(10):77-83. |
Dai Yongqiang, Wang Lianguo, Shi Qiuhong, et al. Performance analysis of improved SFLA and the application in economic dispatchof power system[J]. Power System Protection and Control, 2012,40(10):77-83. |
[1] | WANG Hongliang,CHEN Xinyuan,ZHAO Yumeng. Load Forecasting Method Based on Ensemble Empirical Mode Decomposition and ARIMA-GRNN [J]. Electronic Science and Technology, 2021, 34(12): 42-48. |
[2] | SHI Hui,TONG Dongbing. The Asymptotic Synchronization of Neutral Complex Networks with Adaptive Pinning Control [J]. Electronic Science and Technology, 2021, 34(9): 12-16. |
[3] | WANG Jiaren,WANG Yagang. Research on Complex Control Algorithms for Non-Minimum Phase Systems [J]. Electronic Science and Technology, 2021, 34(1): 55-59. |
[4] | ZHANG Lele,SU Qianmin. Adaptive Sliding Mode Control for Nonlinear Systems with Mismatched Quantization [J]. Electronic Science and Technology, 2020, 33(12): 38-43. |
[5] | GUO Xin,GAO Yan,JIANG Lin,ZHANG Zhishu. Research on Stability of Nonlinear Systems Based on Event Triggering and Quantization [J]. Electronic Science and Technology, 2020, 33(3): 56-61. |
[6] | ZHANG Zhao,ZHANG Tianqi. A Review of Self-Organizing Motion Control Based on Swarm Intelligence [J]. Electronic Science and Technology, 2019, 32(11): 52-57. |
[7] | XIONG Yucong,ZHANG Meng,WEI Dazhong. Research Progress on Modeling and Control of Two-wheeled Self-Balancing Vehicle [J]. Electronic Science and Technology, 2019, 32(7): 49-55. |
[8] | HU Jianqiu,DING Xueming. Design of Double Closed-loop Speed Regulating System for Permanent Magnet Synchronous Motor [J]. Electronic Science and Technology, 2019, 32(3): 21-25. |
[9] | WANG Xingfang,JIN Shiqun,XING Jinyu,HOU Shaoyang,WANG Zhe. A New Trapezoidal Control Method of Sensorless BLDCM [J]. Electronic Science and Technology, 2019, 32(3): 67-71. |
[10] | SUN Jia-Jing, SUN Wei, XU Jie. A Design of Digital Controller of Smart Car Based on Bilinear Transformation [J]. , 2014, 27(1): 100-. |
|