Electronic Science and Technology ›› 2021, Vol. 34 ›› Issue (12): 42-48.doi: 10.16180/j.cnki.issn1007-7820.2021.12.008
Previous Articles Next Articles
WANG Hongliang,CHEN Xinyuan,ZHAO Yumeng
Received:
2020-08-15
Online:
2021-12-15
Published:
2021-12-06
Supported by:
CLC Number:
WANG Hongliang,CHEN Xinyuan,ZHAO Yumeng. Load Forecasting Method Based on Ensemble Empirical Mode Decomposition and ARIMA-GRNN[J].Electronic Science and Technology, 2021, 34(12): 42-48.
[1] |
Sayyidmousavi A, Bougherara H, Fawaz Z. A micromechanical approach for the fatigue failure prediction of unidirectional polymer matrix composites in off-axis loading including the effect of viscoelasticity[J]. Advanced Composite Materials, 2015, 24(1):65-77.
doi: 10.1080/09243046.2014.941189 |
[2] | 陈丽娜, 马龙, 安树怀, 等. 计及储能调度因素的电力系统短期负荷预测模型[J]. 青岛大学学报(工程技术版), 2018, 33(4):45-50. |
Chen Lina, Ma long, An Shuhuai, et al. Study on short-term load forecasting of power system considering energy storage dispatching under real-time price[J]. Journal of Qingdao University(Engineering & Technology Edition), 2018, 33(4):45-50. | |
[3] | 刁家伟. 基于ARIMA-BPNN的负荷预测方法研究与应用[D]. 广州:广东工业大学, 2018. |
Diao Jiawei. Research and implementation of load forecasting method based on ARIMA-BPNN model[D]. Guangzhou:Guangdong University of Technology, 2018. | |
[4] | 丁磊明, 杨晓雷, 黄金波, 等. 基于BP神经网络优化的改进灰色模型在电量预测中的应用[J]. 机电信息, 2019(36):36-39. |
Ding Leiming, Yang Xiaolei, Huang Jinbo, et al. Application of improved grey model based on BP neural network optimization in power forecasting[J]. Mechanical and Electrical Information, 2019(36):36-39. | |
[5] | 陈卓. 残差自修正深度学习集成神经网络在短期电力负荷预测中的应用[D]. 杭州:浙江大学, 2018. |
Chen Zhuo. Application of residual self-correction deep-learning integrated neural network in short-term load forecasting[D]. Hangzhou:Zhejiang University, 2018. | |
[6] | 马立新, 郑晓栋, 尹晶晶. 基于粗糙特征量的短期电力负荷预测[J]. 电子科技, 2016, 29(1):40-43. |
Ma Lixin, Zheng Xiaodong, Yin Jingjing. Short-term load forecasting based on rough characteristic-component algorithm[J]. Electronic Science and Technology, 2016, 29(1):40-43. | |
[7] | 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5):53-62. |
Wang Zengping, Zhao Bing, Ji Weijia, et al. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5):53-62. | |
[8] | Melodi O Adegoke, Olatunji M Adeyanju. Specific system random load forecasts for nigerian 330 kV 38-bus transmission grid[J]. International Journal of Engineering Research in Africa, 2016, 45(9):87-94. |
[9] | 陈卓, 孙龙祥. 基于深度学习LSTM网络的短期电力负荷预测方法[J]. 电子技术, 2018, 47(1):39-41. |
Chen Zhuo, Sun Longxiang. Short-term electrical load forecasting based on deep learning LSTM networks[J]. Electronic Technology, 2018, 47(1):39-41. | |
[10] | Paggi M, Corrado M, Berardone I. A global/local approach for the prediction of the electric response of cracked solar cells in photovoltaic modules under the action of mechanical loads[J]. Engineering Fracture Mechanics, 2016, 16(8):40-57. |
[11] | Shi H, Xu M H, Ma Q Y, et al. A whole system assessment of novel deep learning approach on short-term load forecasting [C].Cardiff:Proceedings of the Ninth International Conference on Applied Energy, 2017. |
[12] | 祝学昌. 基于IFOA-GRNN的短期电力负荷预测方法研究[J]. 电力系统保护与控制, 2020, 48(9):121-127. |
Zhu Xuechang. Research on short-term power load forecasting method based on IFOA-GRNN[J]. Power System Protection and Control, 2020, 48(9):121-127. | |
[13] |
Duarte G R, Fonseca L G, Goliatt P V Z C, et al. Comparison of machine learning techniques for predicting energy loads in buildings[J]. Ambiente Construído, 2017, 17(3):103-115.
doi: 10.1590/s1678-86212017000300165 |
[14] | 刘翊枫, 周国鹏, 刘昕, 等. 基于智能相似日识别及偏差校正的短期负荷预测方法[J]. 电力系统保护与控制, 2019, 47(12):138-145. |
Liu Yifeng, Zhou Guopeng, Liu Xin, et al. A short-term load forecasting method based on intelligent similar day recognition and deviation correction[J]. Power System Protection and Control, 2019, 47(12):138-145. | |
[15] | 陈亮, 王震, 王刚. 深度学习框架下LSTM网络在短期电力负荷预测中的应用[J]电力信息与通信技术, 2017, 15(5):8-11. |
Chen Liang, Wang Zhen, Wang Gang. Application of LSTM network in short-term power load forecasting under the deep learning framework[J]. Electric Power Information and Communication Technology, 2017, 15(5):8-11. | |
[16] | 袁超. 短期电力负荷混合预测模型研究[D]. 兰州:兰州大学, 2015. |
Yuan Chao. Research on hybrid forecasting model of short-term electricity demand[D]. Lanzhou:Lanzhou University, 2015. | |
[17] | 金山红, 朱想, 赫卫国, 等. 基于相空间重构ARIMA和SVR的母线净负荷预测[J]. 电力需求侧管理, 2018, 20(2):20-24. |
Jin Shanhong, Zhu Xiang, He Weiguo, et al. Forecasting of bus-bar net load based on PSR-ARIMA and SVR[J]. Power Demand Side Management, 2018, 20(2):20-24. | |
[18] | 马立新, 尹晶晶, 郑晓栋. 基于特征提取相似日的ELM短期负荷预测研究[J]. 电子科技, 2015, 28(12):22-25. |
Ma Lixin, Yin Jingjing, Zheng Xiaodong. Short-term load forecasting based on daily feature extraction of similar days and ELM[J]. Electronic Science and Technology, 2015, 28(12):22-25. | |
[19] | 周先春, 嵇亚婷. 基于EEMD算法在信号去噪中的应用[J]. 电子设计工程, 2014, 22(8):12-14. |
Zhou Xianchun, Ji Yating. Methods based on EEMD in signal denosing[J]. Electronic Design Engineering, 2014, 22(8):12-14. |
[1] | FENG Xianding,WEI Jingtao,WU Zhangyong,QIAN Jie,PU Youshang. Research on Load Forecast of Ball Mill Based on PCA-PSO-SVM [J]. Electronic Science and Technology, 2022, 35(1): 29-34. |
[2] | WANG Weike,ZHANG Wei,SONG Fang,LONG Lin. Time-Varying Formation Control for Heterogeneous Nonlinear Multi-Agents System [J]. Electronic Science and Technology, 2021, 34(8): 50-57. |
[3] | ZHU Jian'an,WEI Yunbing,ZHU Pengjie,JIANG Chengcheng,ZHU Chengming. Medium and Long-Term Load Forecasting Based on Optimized Grey Fourier Residual Correction [J]. Electronic Science and Technology, 2021, 34(12): 49-55. |
[4] | ZOU Junchen,QI Jinpeng,LI Na,LIU Jialun,ZHU Houjie. Design and Implementation of a Fast Online Algorithm for Mutation Point Detection [J]. Electronic Science and Technology, 2020, 33(8): 10-16. |
[5] | ZHU Jun,LI Zihao,LIU Bingchen,MENG Xiangbin,ZHANG Zhe. State Estimation for Permanent Magnet Synchronous Motor Based on Adaptive Interpolation Extended Kalman Filter [J]. Electronic Science and Technology, 2020, 33(5): 66-71. |
[6] | GUO Xin,GAO Yan,JIANG Lin,ZHANG Zhishu. Research on Stability of Nonlinear Systems Based on Event Triggering and Quantization [J]. Electronic Science and Technology, 2020, 33(3): 56-61. |
[7] | ZHAO Yihe,SHAO Jie,CHENG Yongliang. Behavior Modeling of Class-D Power Amplifier Based on Encoder-Decoder Model [J]. Electronic Science and Technology, 2020, 33(2): 20-24. |
[8] | YANG Haizhu,JIANG Zhaoyang,LI Menglong,KANG Le. Parameters Selection for LSSVM Based on Artificial Fish Swarm-Shuffled Frog Jump Algorithms Optimization in Short-Term Load Forecasting [J]. Electronic Science and Technology, 2020, 33(12): 67-74. |
[9] | ZHANG Lele,SU Qianmin. Adaptive Sliding Mode Control for Nonlinear Systems with Mismatched Quantization [J]. Electronic Science and Technology, 2020, 33(12): 38-43. |
[10] | ZHENG Meng. Design of English-Chinese Translation System Based on Variational Model [J]. Electronic Science and Technology, 2020, 33(12): 75-78. |
[11] | QI Xin,WANG Fuzhong,ZHANG Li,WANG Rui,WANG Xiaohui. Air Conditioning Load Forecast of University Students' Dormitory Based on SVD-LSTM [J]. Electronic Science and Technology, 2020, 33(11): 59-66. |
[12] | LIU Lulu,LIU Ye. Tracking Control Algorithm Based on Dynamic Surface for Nonlinear Systems with Dead-zone Input [J]. Electronic Science and Technology, 2020, 33(11): 49-54. |
[13] | CHEN Hao,SHEN Jingfeng,ZHAO Cheng. The Application of UAV in Emergency Rescue and Disaster Relief [J]. Electronic Science and Technology, 2019, 32(9): 20-25. |
[14] | LI Yapin,ZOU Dexuan,DUAN Na. Optimization of Nonlinear Model Based on GA-BFO Combination Algorithm [J]. Electronic Science and Technology, 2019, 32(5): 16-20. |
[15] | YUE Xiu,ZHANG Wei. UAV Path Planning Based on Intelligent Algorithm [J]. Electronic Science and Technology, 2019, 32(2): 9-13. |
|