Electronic Science and Technology ›› 2020, Vol. 33 ›› Issue (12): 22-27.doi: 10.16180/j.cnki.issn1007-7820.2020.12.005
Previous Articles Next Articles
GUAN Hongyun,SU Zhentao,WANG Chen
Received:
2019-09-18
Online:
2020-12-15
Published:
2020-12-22
Supported by:
CLC Number:
GUAN Hongyun,SU Zhentao,WANG Chen. Improved Background Subtraction Based on Feature Fusion[J].Electronic Science and Technology, 2020, 33(12): 22-27.
Figure 2.
Four algorithms to detection effect (a)Blizzard (103,GMM, KDE, PBAS, proposed algorithm) (b)Cubilce (727,GMM, KDE, PBAS, proposed algorithm) (c)WinterStreet (439,GMM, KDE, PBAS, proposed algorithm) (d)Badminton (140,GMM, KDE, PBAS, proposed algorithm) (e)Canoe (939,GMM, KDE, PBAS, proposed algorithm) (f)Overpass (2370,GMM, KDE, PBAS, proposed algorithm)"
Table 1
Time complexity of the four algorithms"
Method | Blizzard | Cubilce | winterStreet | Badminton | Canoe | Overpass | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CT | HT | CT | HT | CT | HT | CT | HT | CT | HT | CT | HT | CT | HT | |
GMM | 145.1 | 32 | 101.6 | 9 | 133.4 | 26 | 113.1 | 36 | 43.8 | 8 | 111.9 | 8 | 107.6 | 19.8 |
KDE | 101.2 | 45 | 118.2 | 12 | 203.8 | 31 | 129.5 | 42 | 38.1 | 13 | 140.5 | 13 | 121.9 | 26.0 |
PBAS | 275.7 | 56 | 136.4 | 19 | 259.5 | 51 | 147.6 | 60 | 71.6 | 18 | 158.9 | 16 | 174.9 | 36.7 |
本文算法 | 103.4 | 41 | 110.7 | 10 | 196.3 | 29 | 135.9 | 44 | 32.5 | 11 | 120.8 | 9 | 116.6 | 24.0 |
Table 2
Detection performance of the four algorithms"
Method | Blizzard | Cubilce | WinterStreet | Badminton | Canoe | Overpass | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | P | R | P | R | P | R | P | R | P | R | P | R | P | |
GMM | 0.81 | 0.52 | 0.81 | 0.59 | 0.74 | 0.42 | 0.79 | 0.70 | 0.76 | 0.86 | 0.73 | 0.82 | 0.77 | 0.65 |
KDE | 0.78 | 0.73 | 0.83 | 0.55 | 0.71 | 0.35 | 0.73 | 0.62 | 0.75 | 0.83 | 0.80 | 0.91 | 0.76 | 0.67 |
PBAS | 0.72 | 0.87 | 0.86 | 0.67 | 0.66 | 0.38 | 0.76 | 0.64 | 0.86 | 0.90 | 0.83 | 0.92 | 0.78 | 0.73 |
本文算法 | 0.80 | 0.74 | 0.90 | 0.74 | 0.75 | 0.56 | 0.83 | 0.85 | 0.80 | 0.87 | 0.87 | 0.92 | 0.83 | 0.78 |
[1] | 方路平, 何杭江, 周国民. 目标检测算法研究综述[J]. 计算机工程与应用, 2018,54(13):11-18. |
Fang Luping, He Hangjiang, Zhou Guomin. Research overview of object detection methods[J]. Computer Engineering and Applications, 2018,54(13):11-18. | |
[2] | 汪欣, 吴薇, 曾照. 基于视频的人脸检测算法[J]. 电子科技, 2019,31(1):1-7. |
Wang Xin, Wu Wei, Zeng Zhao. Video-based face detection algorithm[J]. Electronic Science and Technology, 2019,31(1):1-7. | |
[3] | Yao J, Odobez J. Multi-layer background subtraction based on color and texture[C]. Minneapolis:IEEE Conference on Computer Vision and Pattern Recognition, 2007. |
[4] | Xu J, Ding X Q, Wang S J, et al. Background subtraction based on a combination of texture, color and intensity[C]. Beijing:The Ninth International Conference on Signal Processing, 2008. |
[5] | Tuzel O, Porikli F, Meer P. A Bayesian approach to background modeling[C]. San Diego:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. |
[6] |
Kim K, Chalidabhongse T H, Harwood D, et al. Real-time foreground-background segmentation using codebook model[J]. Real-Time Imaging, 2005,11(3):172-185.
doi: 10.1016/j.rti.2004.12.004 |
[7] |
Maddalena L, Petrosino A. A self-organizing approach to background subtraction for visual surveillance applications[J]. IEEE Transactions on Image Processing, 2008,17(7):1168-1177.
doi: 10.1109/TIP.2008.924285 pmid: 18586624 |
[8] |
Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(4):657-662.
pmid: 16566514 |
[9] | Liao S C, Zhao G Y, Kellokumpu V, et al. Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[C]. San Francisco:IEEE Conference on Computer Vision and Pattern Recognition, 2010. |
[10] | St-Charles P L, Bilodeau G A, Bergevin R. Flexible background subtraction with self-balanced local sensitivity[C]. Columbus:IEEE Conference on Computer Vision and Pattern Recognition, 2014. |
[11] | Zhang S P, Yao H X, Liu S H. Dynamic background modeling and subtraction using spatio-temporal local binary patterns[C]. San Diego:The Fifteenth IEEE International Conference on Image Processing, 2008. |
[12] | 杜鹃, 吴芬芬. 高斯混合模型的运动目标检测与跟踪算法[J]. 南京理工大学学报, 2017,41(1):41-46. |
Du Juan, Wu Fenfen. Movement target tracking algorithm by using Gaussian mixture model[J]. Journal of Nanjing University of Science and Technology, 2017,41(1):41-46. | |
[13] | 杨大勇, 杨建华, 卢伟基. 于动态阈值的核密度估计前景检测算法[J]. 计算机应用, 2015,37(5):2033-2038. |
Yang Dayong, Yang Jianhua, Lu Wei. Foreground detection algorithm based on dynamic threshold kernel density estimation[J]. Journal of Computer Applications, 2015,37(5):2033-2038. | |
[14] | Zhang Z B, Yuan X B. An improved PBAS algorithm for dynamic background[J]. Electronic Design Engineering, 2017,25(3):35-40. |
[15] | Wang Y, Jodoin P M, Porikli F, et al. CDnet 2014:an expanded change detection benchmark dataset[C]. Columbus:IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014. |
[16] | 郭治成, 党建武, 王阳萍, 等. 基于多特征融合的背景建模方法[J]. 光电工程, 2018,45(12):180-186. |
Guo Zhicheng, Dang Jianwu, Wang Yangping, et al. Background modeling method based on multi-feature fusion[J]. Opto-Electronic Engineering, 2018,45(12):180-186. |
[1] | ZHAO Chong,CHI Mengmeng,CHU Cong,ZHANG Peng. Research on Motion Simulation and Visual Recognition Algorithm of Guide Dog Walking Mechanism [J]. Electronic Science and Technology, 2021, 34(9): 66-72. |
[2] | MA Lixin,DOU Chenfei,SONG Chencan,YANG Tianxiao. Insulator Nondestructive Testing Based on Feature Fusion CNN [J]. Electronic Science and Technology, 2021, 34(7): 26-30. |
[3] | YE Fei, LIU Zilong. Pedestrian Detection Based on Improved YOLOv3 Algorithm [J]. Electronic Science and Technology, 2021, 34(1): 5-9. |
[4] | PEI Xiaofang, HU Min. Study on the Identification of Various Growth and Monitoring of Pest and Disease of Rhododendron [J]. Electronic Science and Technology, 2021, 34(1): 17-22. |
[5] | ZHANG Zechen,JU Zhiyong. Multi-feature Fusion Fruit and Vegetable Image Classification Based on Bag of Feature Model [J]. Electronic Science and Technology, 2020, 33(7): 41-45. |
[6] | WANG Chunjiang,LI Peng. Design of Moving Target Detection System Based on ZYNQ [J]. Electronic Science and Technology, 2020, 33(5): 82-86. |
[7] | SI Qin,LI Feifei,CHEN Qiu. Face Recognition Algorithm Based on Deep Learning and Feature Fusion [J]. Electronic Science and Technology, 2020, 33(4): 18-22. |
[8] | SHAO Yu'e,WANG Jianlai,ZHOU Shenghua,LIU Hongwei,ZHANG Yuehong. Radar Pulse Compression Method Based on LASSO [J]. Electronic Science and Technology, 2020, 33(11): 7-10. |
[9] | ZHONG Mingtuo,CAI Wenyu. Marine Mammal Sound Recognition Based on Feature Fusion [J]. Electronic Science and Technology, 2019, 32(5): 32-37. |
[10] | HOU Yanming,LI Feifei,CHEN Qiu. Video Retrieval Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2019, 32(5): 44-49. |
[11] | YUAN Xiaoping,WANG Gang,WANG Yefeng,WANG Zheyuan,SUN Hui. Traffic Sign Recognition Method Based on Improved Convolutional Neural Network [J]. Electronic Science and Technology, 2019, 32(11): 28-32. |
[12] | WANG Panpan,LI Yuhui. Vehicle Re-identification Method Based on Feature Fusion and L-M Algorithm [J]. , 2018, 31(4): 12-. |
[13] | LI Lu,ZHAN Qiang. Research on Algorithm of Moving Target Detection in Railway Video Surveillance [J]. , 2015, 28(5): 27-. |
[14] | ZHANG Chuanwei,WANG Jingmei,LIN Xiaoming,ZHAO Wenjun. A Moving Objects Detection Method Based on Background Subtraction [J]. , 2015, 28(10): 69-. |
[15] | LI Kun,WU Jialong,LIU Zhong. Research on and Implementation of Video Tracking System Based on ADSP-BF561 [J]. , 2015, 28(1): 106-. |
|