[1] |
Hillel A B, Lerner R, Levi D, et al. Recent progress in road and lane detection:a survey[J]. Machine Vision and Applications, 2014,25(3):727-745.
doi: 10.1007/s00138-011-0404-2
|
[2] |
Gao H, Cheng B, Wang J, et al. Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment[J]. IEEE Transactions on Industrial Informatics, 2018,14(9):4224-4231.
doi: 10.1109/TII.9424
|
[3] |
Schwarting W, Alonso Mora J, Rus D, et al. Planning and decision-making for autonomous vehicles[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018,1(7):187-210.
doi: 10.1146/annurev-control-060117-105157
|
[4] |
Bae I, Moon J, Cha J, et al. Integrated lateral and longitudinal control system for autonomous vehicles[C]. Qingdao:International Conference on Intelligent Transportation Systems, 2014.
|
[5] |
Sutton R S, Barto A G, et al. Reinforcement learning:An introduction[M]. Cambridge: MIT Press, 2018.
|
[6] |
Leonard J, How J, Teller S, et al. A perception-driven autonomous urban vehicle[J]. Journal of Field Robotics, 2008,25(10):727-774.
doi: 10.1002/rob.v25:10
|
[7] |
Montemerlo M, Becker J, Bhat S, et al. Junior:The stanford entry in the urban challenge[J]. Journal of Field Robotics, 2008,25(9):569-597.
doi: 10.1002/rob.v25:9
|
[8] |
Urmson C, Anhalt J, Bagnell D, et al. Autonomous driving in urban environments:Boss and the urban challenge[J]. Journal of Field Robotics, 2008,25(8):425-466.
doi: 10.1002/rob.v25:8
|
[9] |
Bacha A, Bauman C, Faruque R, et al. Odin:Team victortango's entry in the darpa urban challenge[J]. Journal of Field Robotics, 2008,25(8):467-492.
doi: 10.1002/rob.v25:8
|
[10] |
Zheng R, Liu C, Guo Q. A decision-making method for autonomous vehicles based on simulation and reinforcement learning[C]. Tianjin:International Conference on Machine Learning and Cybernetics, 2013.
|
[11] |
Gao Z, Sun T, Xiao H, et al. Decision-making method for vehicle longitudinal automatic driving based on reinforcement Q-learning[J]. International Journal of Advanced Robotic Systems, 2019,16(3):141-172.
|
[12] |
Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[EB/OL]. (2013-12-09) [2019-12-20] https://arxiv.org/abs/1312.5602.
|
[13] |
缪冉, 李菲菲, 陈虬. 基于卷积神经网络与多尺度空间编码的场景识别方法[J]. 电子科技, 2020,33(12):54-58,74.
|
|
Miao Ran, Li Feifei, Chen Qiu, et al. Scene recognition method based on convolutional neural network and multi-scale space coding[J]. Electronic Science and Technology, 2020,33(12):54-58,74.
|
[14] |
程俊华, 曾国辉, 刘瑾, 等. 基于深度强化学习的复杂背景分类方法研究[J]. 电子科技, 2020,33(12):59-66.
|
|
Cheng Junhua, Zeng Guohui, Liu Jin, et al. Research on complex background image classification method based on deep learning[J]. Electronic Science and Technology, 2020,33(12):59-66.
|
[15] |
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540):529-533.
doi: 10.1038/nature14236
|
[16] |
Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016,529(7587):484-496.
doi: 10.1038/nature16961
pmid: 26819042
|
[17] |
Lillicrap, Timothy P, Hunt, et al. Continuous control with deep reinforcement learning[J]. Computer Ence, 2015,8(6):A187-199.
|
[18] |
Wolf P, Hubschneider C, Weber M, et al. Learning how to drive in a real world simulation with deep q-networks[C]. Los Angeles:IEEE Intelligent Vehicles Symposium, 2017.
|
[19] |
Chae H, Kang C M, Kim B D, et al. Autonomous braking system via deep reinforcement learning[C]. Yokohama: IEEE The Twentieth International Conference on Intelligent Transportation Systems, 2017.
|
[20] |
Sallab A E L, Abdou M, Perot E, et al. Deep reinforcement learning framework for autonomous driving[J]. Electronic Imaging, 2017(19):70-76.
|
[21] |
Kendall A, Hawke J, Janz D, et al. Learning to drive in a day[C]. Montreal:International Conference on Robotics and Automation, 2019.
|
[22] |
Ye Y, Zhang X, Sun J. Automated vehicle’s behavior decision making using deep reinforcement learning and high-fidelity simulation environment[J]. Transportation Research Part C:Emerging Technologies, 2019,107(19):155-170.
doi: 10.1016/j.trc.2019.08.011
|
[23] |
Al-Emran M. Hierarchical reinforcement learning: a survey[J]. International Journal of Computing and Digital Systems, 2015,4(2):137-143.
doi: 10.12785/ijcds/040207
|
[24] |
Vezhnevets A S, Osindero S, Schaul T, et al. Feudal networks for hierarchical reinforcement learning[C]. Sydney:Proceedings of the Thirth-fourth International Conference on Machine Learning-Volume, 2017.
|
[25] |
Nachum O, Gu S S, Lee H, et al. Data-efficient hierarchical reinforcement learning[C]. Montreal:Advances in Neural Information Processing Systems, 2018.
|
[26] |
Paxton C, Raman V, Hager G D, et al. Combining neural networks and tree search for task and motion planning in challenging environments[C]. Vancouver:RSJ International Conference on Intelligent Robots and Systems, 2017.
|
[27] |
Nosrati M S, Abolfathi E A, Elmahgiubi M, et al. Towards practical hierarchical reinforcement learning for multi-lane autonomous driving[C]. Montreal:The Thirty-second Conference on Neural Information Processing Systems, 2018.
|
[28] |
Shani G, Pineau J, Kaplow R. A survey of point-based POMDP solvers[J]. Autonomous Agents and Multi-Agent Systems, 2013,27(1):1-51.
doi: 10.1007/s10458-012-9200-2
|
[29] |
Bai H, Hsu D, Lee W S. Integrated perception and planning in the continuous space: A POMDP approach[J]. The International Journal of Robotics Research, 2014,33(9):1288-1302.
doi: 10.1177/0278364914528255
|
[30] |
Brechtel S, Gindele T, Dillmann R. Solving continuous POMDPs: Value iteration with incremental learning of an efficient space representation[C]. Karlsruhe:International Conference on Machine Learning, 2013.
|
[31] |
Wei J, Dolan J M, Snider J M, et al. A point-based mdp for robust single-lane autonomous driving behavior under uncertainties[C]. Shanghai:IEEE International Conference on Robotics and Automation, 2011.
|
[32] |
Ulbrich S, Maurer M. Probabilistic online POMDP decision making for lane changes in fully automated driving[C]. Hague:International IEEE Conference on Intelligent Transportation Systems, 2013.
|
[33] |
Brechtel S, Gindele T, Dillmann R. Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs[C]. Qingdao: International IEEE Conference on Intelligent Transportation Systems, 2014.
|
[34] |
Bandyopadhyay T, Won K S, Frazzoli E, et al. Intention-aware motion planning[M]. Berlin:Algorithmic Foundations of Robotics X, 2013.
|
[35] |
Bai H, Cai S, Ye N, et al. Intention-aware online POMDP planning for autonomous driving in a crowd[C]. Seattle: IEEE International Conference on Robotics and Automation, 2015.
|
[36] |
Liu W, Kim S W, Pendleton S, et al. Situation-aware decision making for autonomous driving on urban road using online POMDP[C]. Seoul:IEEE Intelligent Vehicles Symposium, 2015.
|
[37] |
Song W, Xiong G, Chen H. Intention-aware autonomous driving decision-making in an uncontrolled intersection[J]. Mathematical Problems in Engineering, 2016,31(2):71-87.
|